

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1117

A High-Secure Vlsi Architecture For Advanced Encryption

Standard (Aes) Algorithm

Abstract

In this paper we present a high-performance, high

throughput, and area efficient architecture for the

VLSI implementation of the AES algorithm. The

sub keys, required for each round of the Rijndael

algorithm, are generated in real-time by the key-

scheduler module by expanding the initial secret

key, thus reducing the amount of storage for

buffering. Moreover, pipelining is used after each

standard round to enhance the throughput. A

prototype chip implemented using 0:35¹ CMOS

technology resulted in a throughput of 232Mbps

for iterative architecture and 1:83Gbps for

pipelining architecture.

Keywords-AES; S box; FPGA

I. INTRODUCTION

Several techniques, such as

cryptography, steganography, watermarking,

and scrambling, have been developed to

keep data secure, private, and copyright

protected. Cryptography is an essential tool

underlying virtually all networking and

computer protection, traditionally used for

military and espionage. However, the need

for secure transactions in ecommerce,

private networks, and secure messaging has

moved encryption into the commercial

realm.

Advanced encryption standard

(AES) was issued as Federal Information

Processing Standards (FIPS) by National

Institute of Standards and Technology

(NIST) as a successor to data encryption

standard (DES) algorithms. In recent

literature, a number of architectures for the

VLSI implementation of AES Rijndael

algorithm are reported. It can be observed

that some of these architectures are of low

performance and some provide low

throughput. Further, many of the

architectures are not area efficient and can

result in higher cost when implemented in

silicon.

In this paper, we propose a high

performance, high throughput and area

efficient VLSI architecture for Rijndeal

algorithm that is suitable for low cost silicon

implementation. The proposed architecture

is optimized for high throughput in terms of

the encryption and decryption data rates

using pipelining. Polynomial multiplication

is implemented using XOR operation

instead of using multipliers to decrease the

hardware complexity.

In the proposed architecture both the

encryption and decryption modes use

common hardware resources, thus making

the design area efficient. Selective use of

look-up tables and combinational logic

further enhances the architecture’s memory

optimization, area, and performance. An

important feature of our proposed

architecture is an effective solution of online

V. SPANDANA

M.Tech (VLSI)

Dept of E.C.E

Chaitanya Institute of Technology and Science,

Warangal, Telangana,India

Email: chinnispandu@yahoo.com

Dr. K. SEETHARAM

Associate Professor

Dept of E.C.E

Chaitanya Institute of Technology and Science,

Warangal, Telangana,India

Email: seetha_ram2002@yahoo.com

mailto:chinnispandu@yahoo.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1118

(real-time) round key generation needing

significantly less storage for buffering.

II. RIJNDAEL ALGORITHM

Rijndael algorithm is an iterated

block cipher supporting a variable data

block and a variable key length of 128, 192

or 256 bits. The algorithm consists of three

distinct phases: (i) an initial data/key

addition, (ii) nine (128-bits), eleven (192-

bits) or thirteen (256-bits) standard rounds,

(iii) a final round which is a variation of a

standard round. The number of standard

rounds depends on the data block and key

length. If the maximum length of the data

block or key is 128, 192 or 256, then the

number of rounds is 10, 12 or 14,

respectively.

The initial key is expanded to

generate the round keys, each of size equal

to block length. Each round of the algorithm

receives a new round key from the key

schedule module. Each standard round

includes four fundamental algebraic function

transformations on arrays of bytes. These

transformations are: byte substitution, shift

row, mix column, and round key addition.

The final round of the algorithm is

similar to the standard round, except that it

does not have Mix Column operation.

Decryption is performed by the application

of the inverse transformations of the round

functions. The sequence of operations for

the standard round function differs from

encryption. The computational performance

differs between encryption and decryption

because the inverse transformations in the

round function is more complex than the

corresponding transformation for

encryption.

III. THE PROPOSED VLSI

ARCHITECTURE FOR RIJNDAEL

The proposed architecture showing

the order of operation and control between

the transformations is shown in Fig. 1(a).

A. Architecture of the Data Unit

The data unit consists of: the initial

round of key addition, Nr ¡ 1 standard

rounds, and a final round. The architecture

for a standard round composed of four basic

blocks is shown in Fig. 1(b). For each block,

both the transformation and the inverse

transformation needed for encryption and

decryption, respectively are performed using

the same hardware resources. This

implementation generates one set of sub key

and reuses it for calculating all other sub

keys in real-time.

1) Byte Sub: In this architecture each block

is replaced by its substitution in an S-Box

table consisting of the multiplicative inverse

of each byte of the block state in the finite

field GF(28). In order to overcome the

performance bottleneck.

Fig 1(a) Rijndael Algorithm Data and Control

Flow. (b) Architecture for the Standard Round in

the Data Unit

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1119

The implementation of multiplicative

inverses is carried out using look-up tables.

The implementation includes the affine

mapping of the input in both encryption and

decryption processes.

2) Shift Row: In this transformation the

rows of the block state are shifted over

different offsets. The amount of shifts is

determined by the block length. The

proposed architecture implements the shift

row operation using combinational logic

considering the offset by which a row

should be shifted.

3) Mix Column: In this transformation each

column of the block state is considered as a

polynomial over GF(28). It is multiplied

with a constant polynomial C(x) or D(x)

over a finite field in encryption or

decryption, respectively. In hardware, the

multiplication by the corresponding

polynomial is done by XOR operations and

multiplication of a block by X. This is

implemented using a multiplexer, the control

being the MSB is 1 or 0.

Fig. 2. Architecture for Units used in Mix Column

Transformation

Fig. 3. Architecture for Mix Column

Transformation for 128 bits

4) Add Round Key: In this transformation

the round key obtained from the key

scheduler is XORed with the block state

obtained from the Mix Column

transformation or Shift Row transformation

based on the type of round being

implemented. In the standard round, the

round key is XORed with the output

obtained from the Mix Column

transformation. In the final round the round

key is XORed with the output obtained from

the Shift Row transformation. In the initial

round, bitwise XOR operation is performed

between the initial round key and the initial

state block.

Fig. 4. Architecture for Round Key Addition

Transformation

B. Architecture for Key Scheduling

In the key scheduling module, the

initial key is expanded and the generated

round keys are stored in four 32- bit

registers. Both the forward and reverse key

scheduling are done in the same device. The

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1120

Byte Sub required in the key expansion unit

is implemented using the S-Boxes.

 Four S-Boxes are needed for a 128-

bit key and 128-bit data block implemented

using 8£256 ROM cells. Multiplexers are

used as a control signal to distinguish

between the initial key and the round key

(obtained from the initial key using a “key

expansion unit”).

The least significant 32 bits of the

128-bit key is cyclically shifted to the left by

a byte, implemented using combinational

logic. The resulting word after the left shift

operation is sent through the S-boxes and

the affine mapping operation, in order to

perform Byte Sub. The key resulting from

the Byte Sub is XORed with the Round

Constant (RCON). In this architecture, the

round constant is generated using the

combinational logic. The round constant

should be symmetric with the round key

being generated.

Fig. 5. Architecture for Key Scheduling Unit

The total number of round constants

that need to be generated is equal to the

number of rounds. The round constant is

obtained in real-time by multiplying the

previous round constant by X. This is

amenable for implementation in the

hardware using XOR operations. For the

reverse key scheduling, the last round key

should be generated with forward key

scheduling for the first time. The last round

key is expanded to generate the reverse

round keys.

Decryption requires more cycles than

encryption because it needs pre-scheduling

to generate the last key value. Since the

Rijndael algorithm allows different key

lengths and block lengths, each round key is

carefully set to have the same length as the

data block. In the case where key length and

the block length are not equal, previous,

current and also the next round keys are

needed in order to generate the appropriate

set of round keys that are fed into the

encryption module, which is performed by a

“key alignment unit”.

IV.RESULTS

Fig. 6. RTL SCHEMATIC

Fig. 7. OUTPUT

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1121

V. CONCLUSION

We have presented a VLSI

architecture for the Rijndael AES algorithm

that performs both the encryption and

decryption. S-boxes are used for the

implementation of the multiplicative

inverses and shared between encryption and

decryption.

The round keys needed for each

round of the implementation are generated

in real-time. The forward and reverse key

scheduling is implemented on the same

device, thus allowing efficient area

minimization. Although the algorithm is

symmetrical, the hardware required is not,

with the encryption algorithm being less

complex than the decryption algorithm. The

implementation of the key unit in the

proposed architecture, can be scaled for the

keys of length 192 and 256 bits easily.

VI. REFERENCES

[1] S. P. Mohanty, K. R. Ramakrishnan, and

M. S. Kankanhalli, “A DCT Domain Visible

Watermarking Technique for Images,” in

Proc of the IEEE International Conf on

Multimedia and Expo, 2000, pp. 1029–1032.

[2] M. S. Kankanhalli and T. T. Guan,

“Compressed-Domain Scrambler /

Descrambler for Digital Video,” IEEE

Transactions on Consumer Electronics, vol.

48, no. 2, pp. 356–365, May 2002.

[3] B. M. Macq and J. J. Quisquater,

“Cryptography for Digital TV

Broadcasting,” Proceedings of the IEEE,

vol. 83, no. 6, pp. 944–957, Jun 1995.

[4] H. Kuo and I. Verbauwhede,

“Architectural Optimization for a 1.82

Gbits/sec VLSI Implementation of the AES

Rijndael Algorithm,” in Proceedings of the

Workshop on Cryptographic Hardware and

Embedded Systems, 2001, vol. 2162, pp. 51–

64.

[5] M. McLoone and J. V. McCanny,

“Rijndael FPGA Implementation Utilizing

Look-up Tables,” in Proceedings of the

IEEE Workshop on Signal Processing

Systems, 2001, pp. 349–360.

[6] A. Satoh, S. Morioka, K. Takano, and S.

Munetoh, “A Compact Rijndael Hardware

Architecture with S-Box Optimization,” in

Proceedings of Advances in Cryptology -

ASIACRYPT 2001, 2001, pp. 171–184.

[7] S. Mangard, M. Aigner, and S.

Dominikus, “A Highly Regular and Scalable

AES Hardware Architecture,” IEEE

Transactions on Computers, vol. 52, no. 4,

pp. 483–491, April 2003.

[8] T. Sodon O. J. Hernandez and M. Adel,

“Low-Cost Advanced Encryption Standard

(AES) VLSI Architecture: A Minimalist Bit-

Serial Approach,” in Proc of IEEE

Southeast Conference, 2005, pp. 121–125.

[9] J. Daemen and V. Rijmen, The Design of

Rijndael, Springer-Verlag, 2002.

[10] A. J. Elbirt, W. Yip, B. Chetwynd, and

Christof Paar, “An FPGA Implementation

and Performance Evaluation of the AES

Block Cipher Candidate Algorithm

Finalists,” in Proceedings of the Third

Advanced Encryption Standard (AES)

Candidate Conference, 2000, pp. 13–27.
Authors:

V. SPANDANA studying M.Tech (VLSI) from

Chaitanya Institute of Technology and Science,

Warangal, Telangana,India.

Dr.K.SEETHARAM working as Associate

Professor in Dept of E.C.E from Chaitanya Institute

of Technology and Science, Warangal, Telangana,

India.

