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Abstract 

In this paper we present a high-performance, high 

throughput, and area efficient architecture for the 

VLSI implementation of the AES algorithm. The 

sub keys, required for each round of the Rijndael 

algorithm, are generated in real-time by the key-

scheduler module by expanding the initial secret 

key, thus reducing the amount of storage for 

buffering. Moreover, pipelining is used after each 

standard round to enhance the throughput. A 

prototype chip implemented using 0:35¹ CMOS 

technology resulted in a throughput of 232Mbps 

for iterative architecture and 1:83Gbps for 

pipelining architecture. 
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I. INTRODUCTION 

Several techniques, such as 

cryptography, steganography, watermarking, 

and scrambling, have been developed to 

keep data secure, private, and copyright 

protected. Cryptography is an essential tool 

underlying virtually all networking and 

computer protection, traditionally used for 

military and espionage. However, the need 

for secure transactions in ecommerce, 

private networks, and secure messaging has 

moved encryption into the commercial 

realm.  

Advanced encryption standard 

(AES) was issued as Federal Information 

Processing Standards (FIPS) by National 

Institute of Standards and Technology  

 

 

 

 

 

 

 

 

(NIST) as a successor to data encryption 

standard (DES) algorithms. In recent 

literature, a number of architectures for the 

VLSI implementation of AES Rijndael 

algorithm are reported. It can be observed 

that some of these architectures are of low 

performance and some provide low 

throughput. Further, many of the 

architectures are not area efficient and can 

result in higher cost when implemented in 

silicon. 

In this paper, we propose a high 

performance, high throughput and area 

efficient VLSI architecture for Rijndeal 

algorithm that is suitable for low cost silicon 

implementation. The proposed architecture 

is optimized for high throughput in terms of 

the encryption and decryption data rates 

using pipelining. Polynomial multiplication 

is implemented using XOR operation 

instead of using multipliers to decrease the 

hardware complexity.  

In the proposed architecture both the 

encryption and decryption modes use 

common hardware resources, thus making 

the design area efficient. Selective use of 

look-up tables and combinational logic 

further enhances the architecture’s memory 

optimization, area, and performance. An 

important feature of our proposed 

architecture is an effective solution of online 
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(real-time) round key generation needing 

significantly less storage for buffering. 

 

II. RIJNDAEL ALGORITHM 

Rijndael algorithm is an iterated 

block cipher supporting a variable data 

block and a variable key length of 128, 192 

or 256 bits. The algorithm consists of three 

distinct phases: (i) an initial data/key 

addition, (ii) nine (128-bits), eleven (192- 

bits) or thirteen (256-bits) standard rounds, 

(iii) a final round which is a variation of a 

standard round. The number of standard 

rounds depends on the data block and key 

length. If the maximum length of the data 

block or key is 128, 192 or 256, then the 

number of rounds is 10, 12 or 14, 

respectively.  

The initial key is expanded to 

generate the round keys, each of size equal 

to block length. Each round of the algorithm 

receives a new round key from the key 

schedule module. Each standard round 

includes four fundamental algebraic function 

transformations on arrays of bytes. These 

transformations are: byte substitution, shift 

row, mix column, and round key addition. 

The final round of the algorithm is 

similar to the standard round, except that it 

does not have Mix Column operation. 

Decryption is performed by the application 

of the inverse transformations of the round 

functions. The sequence of operations for 

the standard round function differs from 

encryption. The computational performance 

differs between encryption and decryption 

because the inverse transformations in the 

round function is more complex than the 

corresponding transformation for 

encryption. 

 

III. THE PROPOSED VLSI 

ARCHITECTURE FOR RIJNDAEL 

 

The proposed architecture showing 

the order of operation and control between 

the transformations is shown in Fig. 1(a). 

A. Architecture of the Data Unit 

The data unit consists of: the initial 

round of key addition, Nr ¡ 1 standard 

rounds, and a final round. The architecture 

for a standard round composed of four basic 

blocks is shown in Fig. 1(b). For each block, 

both the transformation and the inverse 

transformation needed for encryption and 

decryption, respectively are performed using 

the same hardware resources. This 

implementation generates one set of sub key 

and reuses it for calculating all other sub 

keys in real-time. 

1) Byte Sub: In this architecture each block 

is replaced by its substitution in an S-Box 

table consisting of the multiplicative inverse 

of each byte of the block state in the finite 

field GF(28). In order to overcome the 

performance bottleneck. 

 
Fig 1(a) Rijndael Algorithm Data and Control 

Flow. (b) Architecture for the Standard Round in 

the Data Unit 
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The implementation of multiplicative 

inverses is carried out using look-up tables. 

The implementation includes the affine 

mapping of the input in both encryption and 

decryption processes. 

2) Shift Row: In this transformation the 

rows of the block state are shifted over 

different offsets. The amount of shifts is 

determined by the block length. The 

proposed architecture implements the shift 

row operation using combinational logic 

considering the offset by which a row 

should be shifted. 

3) Mix Column: In this transformation each 

column of the block state is considered as a 

polynomial over GF(28). It is multiplied 

with a constant polynomial C(x) or D(x) 

over a finite field in encryption or 

decryption, respectively. In hardware, the 

multiplication by the corresponding 

polynomial is done by XOR operations and 

multiplication of a block by X. This is 

implemented using a multiplexer, the control 

being the MSB is 1 or 0.  

 
Fig. 2. Architecture for Units used in Mix Column 

Transformation 

 

 
Fig. 3. Architecture for Mix Column 

Transformation for 128 bits 

4) Add Round Key: In this transformation 

the round key obtained from the key 

scheduler is XORed with the block state 

obtained from the Mix Column 

transformation or Shift Row transformation 

based on the type of round being 

implemented. In the standard round, the 

round key is XORed with the output 

obtained from the Mix Column 

transformation. In the final round the round 

key is XORed with the output obtained from 

the Shift Row transformation. In the initial 

round, bitwise XOR operation is performed 

between the initial round key and the initial 

state block. 

 
Fig. 4. Architecture for Round Key Addition 

Transformation 

 

B. Architecture for Key Scheduling 

In the key scheduling module, the 

initial key is expanded and the generated 

round keys are stored in four 32- bit 

registers. Both the forward and reverse key 

scheduling are done in the same device. The 
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Byte Sub required in the key expansion unit 

is implemented using the S-Boxes. 

 Four S-Boxes are needed for a 128-

bit key and 128-bit data block implemented 

using 8£256 ROM cells. Multiplexers are 

used as a control signal to distinguish 

between the initial key and the round key 

(obtained from the initial key using a “key 

expansion unit”).  

The least significant 32 bits of the 

128-bit key is cyclically shifted to the left by 

a byte, implemented using combinational 

logic. The resulting word after the left shift 

operation is sent through the S-boxes and 

the affine mapping operation, in order to 

perform Byte Sub. The key resulting from 

the Byte Sub is XORed with the Round 

Constant (RCON). In this architecture, the 

round constant is generated using the 

combinational logic. The round constant 

should be symmetric with the round key 

being generated. 

 
Fig. 5. Architecture for Key Scheduling Unit 

 

The total number of round constants 

that need to be generated is equal to the 

number of rounds. The round constant is 

obtained in real-time by multiplying the 

previous round constant by X. This is 

amenable for implementation in the 

hardware using XOR operations. For the 

reverse key scheduling, the last round key 

should be generated with forward key 

scheduling for the first time. The last round 

key is expanded to generate the reverse 

round keys.  

Decryption requires more cycles than 

encryption because it needs pre-scheduling 

to generate the last key value. Since the 

Rijndael algorithm allows different key 

lengths and block lengths, each round key is 

carefully set to have the same length as the 

data block. In the case where key length and 

the block length are not equal, previous, 

current and also the next round keys are 

needed in order to generate the appropriate 

set of round keys that are fed into the 

encryption module, which is performed by a 

“key alignment unit”. 

 

IV.RESULTS 

 
Fig. 6. RTL SCHEMATIC 

 
Fig. 7. OUTPUT 
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V. CONCLUSION 

We have presented a VLSI 

architecture for the Rijndael AES algorithm 

that performs both the encryption and 

decryption. S-boxes are used for the 

implementation of the multiplicative 

inverses and shared between encryption and 

decryption.  

The round keys needed for each 

round of the implementation are generated 

in real-time. The forward and reverse key 

scheduling is implemented on the same 

device, thus allowing efficient area 

minimization. Although the algorithm is 

symmetrical, the hardware required is not, 

with the encryption algorithm being less 

complex than the decryption algorithm. The 

implementation of the key unit in the 

proposed architecture, can be scaled for the 

keys of length 192 and 256 bits easily. 
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