
International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1108

AJAX(Asynchronous Java Script and XML)
Pramod kumar & Ruchi Yadav

Dept. of Information & technology, Dronacharya College of Engineering

Farruhknagar, Gurgaon, India

Email:ruchiyadav477@gmail.com

Abstract

In recent years, information system based on

browse/server architecture (namely B/S

architecture) received more favor by

enterprises. Ajax technology consists of five

parts. They are HTML, JavaScript, DHTML,

DOM and XML. With the help of

cooperation and collaboration of these

technologies, they can optimize the

conventional enterprise information system

by using an asynchronous way. Meanwhile,

a quickly-responded and smoother user

interface was provided. Enterprise

information system with Ajax can be

operated in a more efficient way, which

means even use the current hardware, it can

provide more load capacity, be more stable

and serve more clients in parallel. In this

paper: we present two kinds of information

system models, one use conventional B/S

architecture and the other use Ajax

enhanced B/S architecture. First, we build

both of the systems in accordance with

typical business applications (search files,

database access, etc.). Second, we use

standard web pressure test tool such as

Microsoft Web Application Stress tool to test

both of the systems to get information like

concurrent user number and average

response time. Finally, with those

experimental data, I compare and found out

the difference between the two systems. The

results presented in this paper propose a

good way for enterprises, to enhance the

information system performance, capacity

and stability under a definite hardware

facilities circumstance.

Keywords:

 Ajax; HTML; DHTML; XML; DOM

1. INTRODUCTION

Over the course of the past decade, the move

from desktop applications towards web

applications has gained much attention and

acceptance. Within this movement,

however, a great deal of user interactiveness

has been lost.Classical web applications are

based on a multi page interface model, in

which interactions are based on a page-

sequence paradigm. While simple and

elegant in design for exchanging documents,

this model has many limitations for

developing modern web applications with

user friendly human-computer

interaction.Recently, there has been a shift

in the direction of web development. A new

breed of web application, dubbed AJAX

(Asynchronous JavaScript And XML), is

emerging in response to the limited degree

of interactivity in large-grain stateless Web

interactions. At the heart of this new

approach lies a single page interface model

that facilitates rich interactivity. In this

model, changes are made to individual user

interface components contained in a web

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1109

page, as opposed to refresh the entire page.

Thanks to the momentum of AJAX, single

page interfaces have attracted a strong

interest in the web application development

community. After the name AJAX was

coined in February 2005, numerous

frameworks and librarieshave appeared,

many web applications have adopted one or

more of the ideas underpinning AJAX, and

an overwhelming number of articles in

developer sites and professional magazines

have appeared. Adopting AJAX-based

techniques is a serious option not only for

newly developed applications, but also for

existing web sites if their user friendliness is

inadequate.A software engineer considering

adopting AJAX, however,is faced with a

number of challenges. What are the

fundamental architectural differences

between designing a legacy web application

and an AJAX web application? What are the

different characteristics of AJAX

frameworks? What do these frameworks

hide? Is there enough support for designing

such applications? What problems can one

expectduring the development phase? Will

there be some sort of convergence between

the many different technologies?Which

architectural elements will remain, and

which ones will be replaced by more elegant

solutions?Addressing these questions calls

for a more abstract perspective on AJAX

web applications. Despite all the attentionthe

technology is receiving in the web

community, there is a lack of a coherent and

precisely described set of architectural

formalisms for AJAX enabled web

applications. In this paper we explore

whether concepts and principles as

developed in the software architecture

research community can be of help to

answer such questions. In particular, we

propose SPIAR, an architectural style for

AJAX applications, and study to what extent

this style can help in addressing our

questions.This paper is organized as follows.

We start out, inSection 2 by exploring

AJAX, studying three frameworks

(Google’s GWT, Backbase, and the open

source Echo2) that have made substantially

different design choices. Then, in Section 3,

we survey existing architectural styles (such

as the Representational State Transfer

architectural style REST on which the

World Wide Web is based), and analyze

their suitability for characterizing AJAX.

Next, in Section 4, we propose SPIAR,

describing the architectural properties,

elements, and constraints of this style. Given

SPIAR, in Section 5 we use its concepts and

principles to discuss various open issues in

AJAX frameworks and application

development.We conclude with a summary

of related work, contributions,and an

outlook to future work.

 2. AJAX FRAMEWORKS

2.1. Ajax

AJAX is the name given to a set of modern

web application development technologies,

previously known as DynamicHTML

(DHTML) and remote scripting, to provide a

more interactive web-based user

interface.As defined by Garrett [14], AJAX

incorporates: standards basedpresentation

using XHTML and CSS, dynamic display

and interaction using the Document Object

Model, data interchange and manipulation,

asynchronous data retrieval using

XMLHttpRequest, and JavaScript binding

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1110

everything together. This definition,

however, only focuses on the clientside of

the web application setting. AJAX is an

approach to web application development

utilizinga combination of established web

technologies. It is the combination of these

technologies that makes AJAXunique and

powerful on the Web.Even before the term

AJAX was coined, its power was

becomingevident by web applications such

as Google Suggest and Google Map. Other

well known examples are Flickr,Gmail, and

the new version of Yahoo Mail.

2.2. Frameworks

Web application developers have struggled

constantly with the limits of the HTML

page-sequence experience, and the

complexities of client-side JavaScript

programming to add some degree of

dynamism to the user interface. Issues

regarding cross-browser compatibility are,

for instance, known to everyone who has

built a real-world web application. The rich

user interface (UI) experience AJAX

promises comes at the price of facing all

such problems. Developers are required to

have advanced skills in a variety of Web

technologies, if they are to build robust

AJAX applications. Also, much effort has to

be spent on testing these applications before

going in production. This is where

frameworks come to the rescue. At least

many of them claim to,Because of the

momentum AJAX has gained, a vast number

of frameworks are being developed. The

importance of bringing order to this

competitive chaotic world becomes evident

when we learn that ‘almost one new

framework per day is being added to the list

of known frameworks. We have studied and

experimented with several AJAX

frameworks trying to understand their

architectural properties.We summarize three

of these frameworks in this section.Our

selection includes a widely used open source

framework called Echo, the web framework

offered by Google called GWT, and the

commercial package delivered by

Backbase.All three frameworks are major

players in the AJAX market,and their

underlying technologies differ substantially.

Echo2

Echo23 is an open-source AJAX framework

which allows the developer to create web

applications using an objectoriented,UI

component-based, and event-driven

paradigm for Web development. Its Java

Application Framework provides the APIs

(UI components, property objects, and

event/

listeners) to represent and manage the state

of an application and its user interface.All

functionality for rendering a component or

communicating with the client browser is

specifically assembled in aseparate module

called the Web Rendering Engine. The

engine consists of a server-side portion

(written in Java/J2EE) and a client-side

portion (JavaScript). The client/server

interaction protocol is hidden behind this

module and as such,it is entirely decoupled

from other modules. Echo2 has an Update

Manager which is responsible for tracking

updates to the user interface component

model, and for processing input received

from the rendering agent and

communicating it to the components.The

Echo2 Client Engine runs in the client

browser and provides a remote user interface

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1111

to the server-side application. Its main

activity is to synchronize client/server state

when user operations occur on the

interface.A ClientMessage in XML format is

used to transfer the

client state changes to the server by

explicitly stating the nature of the change

and the corresponding component IDthe

change has taken place on. The server

processes the ClientMessage, updating the

component model to reflect theuser’s

actions. Events are fired on interested

listeners, possibly resulting in further

changes to the server-side state of the

application. The server responds by

rendering a ServerMessage which is again

an XML message containing directives to

perform partial updates to the DOM

representation on the client.

GWT

Google has a novel approach to

implementing its AJAX framework, Google

Web Framework (GWT).Just likeEcho2,

GWT facilitates the development of UIs in a

fashion similar to AWT or Swing and comes

with a library ofwidgets that can be used.

The unique character of GWT lies in the

way it renders the client-side UI. Instead of

keeping the UI components on the server

and communicating the state changes, GWT

compiles all the Java UI components to

JavaScript code (compile-time). Within the

components the developer is allowed to use

a subset of Java 1.4 API to implement

needed functionality.GWT uses a small

generic client engine and, using the

compiler, all the UI functionality becomes

available to the user on the client. This

approach decreases round-trips to theserver

drastically. The server is only consulted if

raw data is needed to populate the client-

side UI components. This is carried out by

making server calls to defined services. The

services (which are not the same asWeb

Services) are implemented in Java and data

is passed both ways over the network using

serialization techniques.

Backbase

Backbase5 is an Amsterdam-based company

that provided one of the first commercial

AJAX frameworks. The framework is still in

continuous development, and in use by

numerous customers world wide.A key

element of the Backbase framework is the

Backbase Presentation Client. This a

standards-based engine written in Javascript

that runs in the web browser. It can be

programmed via a declarative user interface

language called BXML. BXML offers

library of UI controls, a mechanism for

attaching actions to them, as well as

facilities for connecting to the server

asynchronously. The server side of the

Backbase framework is formedby BJS, the

Backbase Java Server. It is built on top of

JavaServer Faces (JSF)6, the new J2EE

presentation architecture. JSF provides a

user interface component-based framework

following the model-view-controller pattern.

The interaction in JSF is, however, based on

the classical page sequence model, making

integration in a single page framework non

trivial.Backbase Java Server provides its

own set of UI components and extends the

JSF framework to provide a single page

interface implementation. Any Java class

that offers getters and setters for its

properties can be directly assigned to a UI

component property. Developers can use the

componentsdeclaratively (web-scripting) to

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1112

build an AJAX application.The framework

renders each declared server-sideUI

component to a corresponding client-side

(BXML) UI component,and keeps track of

changes on both component trees for

synchronization.The state changes on the

client are sent to the server on certain

defined events. These can be action events

like clicking a button, or value change

events such as checking a radio button. The

server translates these state changes and

identifies the corresponding component(s) in

the server component tree. After the

required action, the server renders the

changes to be responded to the engine again

in BXML format.

2.3. Features

While different in many ways, these

frameworks share some common

architectural characteristics. Generally, the

goals of these frameworks can be

summarized as follows:

 • Hide the complexity of developing AJAX

applications -which is a tedious, difficult,

and error-prone task,

• Hide the incompatibilities between

different web-browsers and platforms,

• Hide the client/server communication

complexities,

• All this to achieve rich interactivity and

portability for end users, and ease of

development for developers.

The frameworks achieve these goals by

providing a library of user interface

components and a development environment

to create reusable custom components. The

architectures have a well defined protocol

for small interactions among known

client/server components. Data needed to be

transferred over the network is significantly

reduced. This can result in faster response

data transfers. Their architecture takes

advantage of client side processing resulting

in improved user interactivity, smaller

number of round-trips, and a reduced web

server load.

3. ARCHITECTURAL STYLES

3.1. Terminology

In this paper we use the software

architectural concepts and terminology as

used by Fieldind which in turn is based on

the work of Perry and Wolf . Thus, a

software architecture is defined as a

configuration of architectural

elements—processing, connectors, and

data— constrained in their relationships in

order to achieve a desired set of architectural

properties.An architectural style, in turn, is a

coordinated set of architectural constraints

that restricts the roles of architectural

elements and the allowed relationships

among those elements within any

architecture that conforms to that style.An

architectural style constrains both the design

elements and the relationships among them

in such a way as to result in software

systems with certain desired properties.An

architectural system can be composed of

multiple styles and a style can be hybrids of

other styles. Styles can be seen as reusable

common architectural patterns within

different system architectures and hence the

term architecturalpattern is also used to

describe the same concept .

3.2. Existing Styles

User interface applications generally make

use of popularstyles such as

Module/View/Controler to describe large

scale architecture and, in more specific

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1113

cases, styles like C2to rely on asynchronous

notification of state changes and request

messages between independent

components.Many different network-based

architectural styles , such as client/server, n-

tier , and Code on Demand,exist but in our

view the most complete and appropriate

style for the Web, thus far, is the

REpresentational State Transfer(REST)

.REST emphasizes the abstraction of data

and services as resources that can be

requested by clients using the resource’s

name and address, specified as a Uniform

Resource Locator (URL) . The style inherits

characteristics from a number of other styles

such as client/server, pipe-and-filter, and

distributed objects.The style is a description

of the main features of the Web architecture

through architectural constraints which have

contributed significantly to the success of

the Web. It revolves around five

fundamental notions: a resource which can

be anything that has identity, e.g., a

document or image, the representation of a

resource which is in the form of a media

type, synchronous request-response

interaction over HTTP to obtain or modify

representations, a web page as an instance of

the application state, and engines

(e.g.,browser, crawler) to move from one

state to the next.REST specifies a client-

stateless-server architecture inwhich a series

of proxies, caches, and filters can be used

andeach request is independent of the

previous ones, inducingthe property of

scalability. It also emphasizes on a

uniforminterface between components

constraining information tobe transferred in

a standardized form.

3.3. A Style for Ajax

AJAX applications can be seen as a hybrid

of desktop and web applications, inheriting

characteristics from bothworlds. Can we

reuse styles from these worlds? User

interface styles such as C2 are meant

specifically forpeer-to-peer environments

and thus are not suitable for Web

applications.AJAX frameworks provide

back-end services through UI components to

the client in an event-driven style

whereasREST provides resources. AJAX

architectures are also not so easily captured

in REST, due to the following differences:

• While REST is suited for large-grain

hypermedia data transfers, because of its

uniforminterface constraint it is not optimal

for small data interactions required in AJAX

applications.

• REST focuses on a hyper-linked resource-

based interaction in which the client requests

a specific resource.

In contrast, in AJAX applications the user

interacts with the system much like in a

desktop application, requesting

a response to a specific action.

• All interactions for obtaining a resource’s

representation are performed through a

synchronous requestresponse

pair in REST. AJAX applications, however,

require a model for asynchronous

communication.

• REST explicitly constrains the server to be

stateless, i.e. each request from the client

must contain all the information necessary

for the server to understand the request.

While this constraint can improve

scalability, the tradeoffs with respect to

network performance and user interactivity

are of greater importance when designing

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1114

an AJAX architecture.Because of these

requirement mismatches, we do not see how

existing styles such as REST or C2 can help

to address some of the questions raised in

the introduction. Therefore, we will propose

a style specifically tailored towards AJAX

applications, and study if this style can be

used for this purposeinstead.

4. RELATED WORK

While the attention for rich Internet

applications in general and AJAX in

particular in professional magazines and

Internet technology related web sites has

been overwhelming, few research papers

have been published on the topic so

far.Recently a number of technical books

have appeared on the subject of developing

AJAX applications. Asleson and Schutta

focus primarily on the client side aspects of

the technology and remain ‘pretty agnostic’

to the server

side. Crane et al. provide an in-depth

presentation of AJAX web programming

techniques and prescriptions forbest

practices with detailed discussions of

relevant design patterns. They also mention

improved user experience andreduced

network latency by introducing

asynchronous interactions as themain

features of such applications. While these

books focus mainly on the implementation

issues, our work examines the architectural

design decisions and properties from an

abstraction level by focusing on the

interactions between the different

client/server components.

Pace is an event- based architectural style

for trust management in decentralized

applications. TIGRA is adistributed system

style for integrating front-office systems

with middle- and back-office applications.

Aura , an architectural framework for user

mobility in ubiquitous environments, uses

models of user tasks as first class entities to

set up, monitor and adapt computing

environments. Khare and Taylor evaluate

and extend REST for decentralizedsettings

and represent an event-based architectural

style called ARRESTED. The asynchronous

extension of REST, called A+REST, permits

a server to broadcast notifications of its state

changes to ‘watchers’. This work is highly

related to the concepts of AJAX

applications. Applying a real push-based

interaction style to AJAX, however, will

probably take some time as the standard

browsers and servers do not support this

form of communication yet.

The SPIAR style itself draws from many

existing styles and software fields, discussed

and referenced in the paper. Our work

relates closely to the software engineering

principles of the REST style . While REST

deals with the architecture of the Web as a

whole, SPIAR focuses on the specific

architectural decisions of AJAX

frameworks.

5. CONCLUSION

In this paper we have discussed SPIAR, an

architectural style for AJAX. The

contributions of this paper are in two

research fields: web application

development and software architecture.

From a software architecture perspective,

our contribution consists of the use of

concepts and methodologies obtained from

software architecture research in the setting

of AJAX Internet applications. Our paper

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

AJAX (ASYNCHRONOUS JAVASCRIPT AND XML) Pramod kumar & Ruchi Yadav

P a g e | 1115

further illustrates how the architectural

concepts such as properties, constraints, and

different types of architectural elements can

help to organize and understand a complex

and dynamic field such as single page

Internet development. In order to do this,

our paper builds upon the foundations

offered by the REST style, and offers a

further analysis of this style for the purpose

of buildingweb applications with rich user

interactivity. From a web engineering

perspective, our contribution consists of the

SPIAR style itself, which captures the

guiding software engineering principles that

practitioners can use

when constructing and analyzing AJAX

frameworks as well as applications. The

style is based on an analysis of various of

such frameworks, and we have used it to

address various design tradeoffs and open

issues in AJAX applications. Future work

encompasses the use of SPIAR to analyze

and influence AJAX developments. One

route we foresee is the extension of SPIAR

to incorporate additional models for

representing, e.g., navigation or UI

components, thus making it possible to

adopt a model-driven approach to AJAX

development. At the time of writing, we are

using SPIAR in the context of enriching

existing web applicationswith AJAX

capabilities.

6.ACKNOWLEDGEMENTS

Partial support was received from

SenterNovem, project Single Page

Computer Interaction (SPCI). We thank Bas

Graaf (TU Delft), Tijs van der Storm (CWI),

and Mark Schieffelbein (Backbase) for their

feedback on our paper. We particularly

would like to thank Kees Broenink

(Backbase) for our earlier collaboration on

SPIAR .

7.REFERENCES

[1] R. Asleson and N. T. Schutta.

Foundations of Ajax. Apress, 2005.

[2] D. J. Barrett, L. A. Clarke, P. L.

Tarr, and A. E.Wise. A framework

for event-based software integration.

ACM Trans. Softw. Eng. Methodol.,

5(4):378–421, 1996.

[3] L. Bass, P. Clements, and R.

Kazman. Software architecture in

practice, 2nd ed. Addison-Wesley,

2003.

[4] T. Berners-Lee, L. Masinter, and M.

McCahill. RFC 1738: Uniform

Resource Locators (URL), 1994.

[5] C. Bouras and A. Konidaris.

Estimating and eliminating

redundant data transfers over the

Web: a fragment based approach:

Research articles. Int. J. Commun.

Syst., 18(2):119–142, 2005.

