
International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 1127

Distributed Operating System

RuchiYadav&Pramod Kumar

Dept. of Information & technology, Dronacharya College of Engineering

Farruhknagar, Gurgaon, India

Email:ruchiyadav477@gmail.com

Abstract

A distributed operating system is a control

program running on a set of computers that are

interconnected by a network. This control

unifies the different computers into a single

integrated compute and storage resources.

Depending on the facilities it provides, a

distributed operating system is classified as

general purpose, real time, or embedded. The

need for distributed operating systems stems

from rapid changes in the hardware

environment in many organizations. As the price

of CPU chips continues to fall rapidly, it will

soon be economically feasible to build computer

systems containing a large number of

processors. In this paper a logical model of a

distributed operating system has been

presented. This model of a distributed operating

system contains a set of processes managing

resources, connections between these processes,

and mappings of events controlling this

distributed operating system into processes

managing resources. This article presents a

paradigm for structuring distributed operating

systems, the potential and implications this

paradigm has for users and research directions

for future.

1. Introduction

In the last few decades, we’ve seen computers

move from large, monolithic machines that

allowed a single user complete access to the

entire machine to large machines that allowed

multiple users to have access to the machine

simultaneously. Then, a decade or so ago, the

next step was taken; the machines became

smaller and again returned to single user

computers, this time being called ‘personal

computers’. The final step, so far, is to tie these

personal computers to a central resource system

for shared disks, printers, CPU cycles, and so

on; distributed computing.

Since the late 1970’s distributed computing, and

more specifically distributed operating systems

research, has yielded an impressive amount of

excellent work, moving to the forefront of

computer science research areas in the

university environment. The cost of CPU chips

is expected to continue declining during the

coming decade, leading to systems containing a

large number of processors. Connecting all

these processors using standard technology

(e.g., a LAN) is easy. The hard part is designing

and implementing software to manage and use

all of this computing power in a convenient

way. In this paper we describe a distributed

operating system.

2. Two Paradigm

Operating system structures for a distributed

environment follow one of two paradigms:

message based or object based. Message based

operating systems place a message-passing

kernel on each node and use explicit messages

to support interprocesses communication. The

kernel supports local communication and

remote communication, which is sometimes

implemented through a separate network-

manager process. In a traditional system such as

UNIX, access to system services via procedure

call, whereas in a message based operating

system, the requests are via message passing.

Message based operating systems are attractive

for structuring operating systems because the

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 1128

policy, which is encoded in the server processes,

is separate from the mechanism implemented in

the kernel.

2.1. Message Passing

The model that is favored by researchers in this

area is the client-server model, in which a client

process wanting some service (e.g., reading

some data from a file) sends a message to the

server and then waits for a reply message. The

system just provides two primitives: SEND and

RECEIVE. The SEND primitive specifies the

destination and provides a buffer; the RECEIVE

primitive tells from whom a message is desired

(including "anyone") and provides a buffer

where the incoming message is to be stored. No

initial setup is required, and no connection is

established, hence no teardown is required.

Two of the fundamental decisions that

must be made are unreliable vs. reliable and no

blocking vs. blocking primitives. At one

extreme, SEND can put a message out onto the

network and wish it good luck. No guarantee of

delivery is provided, and no retransmissions are

attempted by the system. At the other extreme,

the SEND can handle lost messages,

retransmissions, and acknowledgements

internally, so that when SEND terminates, the

program is sure that the message has been

received and acknowledged.

The other choice is between non-blocking

and blocking primitives. With non-blocking

primitives, SEND returns control to the user

program as soon as the message has been

queued for subsequent transmission (or a copy

made). If no copy is made, any changes the

program makes to the data before or (heaven

forbid) while it is being sent, are made at the

program’s peril. When the message has been

transmitted (or copied to a safe place for

subsequent transmission), the program is

interrupted to inform it that the buffer may be

reused. The corresponding RECEIVE primitive

signals a willingness to receive a message, and

provides a buffer for it to be put into. When a

message has arrived, the program is informed by

interrupt. The advantage of these non-blocking

primitives is that they provide the maximum

flexibility: programs can compute and perform

message I/O in parallel any way they want to.

Another design decision that is closely

related to the ones above is whether or not to

buffer messages. The simplest strategy is not to

buffer. When a sender has a message for a

receiver that has not (yet) executed a RECEIVE

primitive, the sender is blocked until a

RECEIVE has been done, at which time the

message is copied from sender to receiver. This

strategy is sometimes referred to as a

rendezvous, and it provides for simple flow

control.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 1129

2.2. Object Based

Object based distributed operating systems

encapsulate services and resources into entities

called objects. Objects are similar to instances

of abstract data types. They are written as

individual modules composed of the specific

operations that define the module interfaces.

Clients request access to system services by

invoking the appropriate system object. The

invocation mechanism is similar to protected

procedure call. Objects encapsulate

functionality much as server processes do in

message based systems. Most object based

systems are built on top of an existing operating

system, typically UNIX. Examples of such

systems include Argus, Cronus and Eden.

These systems support objects that respond to

invocations sent via the message passing

mechanisms of UNIX. Mach is an operating

system with distinctive characteristics. A UNIX

compatible system built to be machine

independent; it runs on a large variety of

uniprocessors and multiprocessors. It has a

small kernel that handles the virtual memory

and process scheduling, and it builds other

services on top of the kernel. Mach implements

mechanisms that provide distribution, especially

through a facility called memory objects, for

sharing memory between separate tasks

executing on possibly different machines.

3. Remote Procedure Call

RPC is a powerful technique for

constructing distributed, client-server based

applications. It is based on extending the notion

of conventional or local procedure calling, so

that the called procedure need not exist in the

same address space as the calling procedure.

The two processes may be on the same system,

or they may be on different systems with a

network connecting them. By using RPC,

programmers of distributed applications avoid

the details of the interface with the network. The

transport independence of RPC isolates the

application from the physical and logical

elements of the data communications

mechanism and allows the application to use a

variety of transports.

RPC makes the client/server model of

computing more powerful and easier to

program. When combined with the ONC

RPCGEN protocol compiler clients

transparently make remote calls through a local

procedure interface.

3.1. How RPC Works

An RPC is analogous to a function call.

Like a function call, when an RPC is made, the

calling arguments are passed to the remote

procedure and the caller waits for a response to

be returned from the remote procedure. The low

of activity that takes place during an RPC call

between two networked systems. The client

makes a procedure call that sends a request to

the server and waits. The thread is blocked from

processing until either a reply is received, or it

times out. When the request arrives, the server

calls a dispatch routine that performs the

requested service, and sends the reply to the

client. After the RPC call is completed, the

client program continues. RPC specifically

supports network applications.

A remote procedure is uniquely identified

by the triple: (program number, version number,

procedure number) the program number

identifies a group of related remote procedures,

each of which has a unique procedure number.

A program may consist of one or more versions.

Each version consists of a collection of

procedures which are available to be called

remotely. Version numbers enable multiple

versions of an RPC protocol to be available

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 1130

simultaneously. Each version contains a number

of procedures that can be called remotely. Each

procedure has a procedure number.

4. Features of Distributed Operating System

The main features of a distributed system

include:

• Functional Separation Based on the

functionality/services provided, capability and

purpose of each entity in the system.

• • Inherent distribution Entities such as

information, people, and systems are inherently

distributed. For example, different information

is created and maintained by different people.

This information could be generated, stored,

analyzed and used by different systems or

applications which may or may not be aware of

the existence of the other entities in the system.

• Reliability Long term data preservation

and backup (replication) at different locations.

• Scalability Addition of more resources

to increase performance or availability.

• Economy Sharing of resources by many

entities to help reduce the cost of ownership.

As a consequence of these features, the

various entities in a distributed system can

operate concurrently and possibly

autonomously. Tasks are carried out

independently and actions are co-ordinate at

well-defined stages by exchanging messages.

Also, entities are heterogeneous, and failures are

independent. Generally, there is no single

process, or entity, that has the knowledge of the

entire state of the system.

Various kinds of distributed systems

operate today, each aimed at solving different

kinds of problems. The challenges faced in

building a distributed system vary depending on

the requirements of the system. In general,

however, most systems will need to handle the

following issues:

• Heterogeneity – Various entities in the system

must be able to interoperate with one

another, despite differences in hardware

architectures, operating systems,

communication protocols, programming

languages, software interfaces, security

models, and data formats.

• Transparency-

The entire system should appear as a

single unit and the complexity and

interactions between the components

should be typically hidden from the end

user.

• Fault tolerance and failure

management Failure of one or more

components should not bring down the entire

system, and should be isolated.

• Scalability

The system should work efficiently

with increasing number of users

and addition of a resource should

enhance the performance of the

system.

• Concurrency Shared access to resources

should be made possible.

• Openness and Extensibility

Interfaces should be cleanly

separated and publicly available

to enable easy extensions to

existing components and add

new components.

• Migration and load balancing –

Allow the movement of tasks within a system

without affecting the operation of users or

applications, and distribute load among

available resources for improving performance.

• Security Access to resources should be

secured to ensure only known users are

able to perform allowed operations.

Several software companies and research

institutions have developed distributed

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 1131

computing technologies that support some or all

of the features described above.

5. Cloud Approach

A Cloud is a distributed operating system

that integrates a set of nodes into a conceptually

centralized system. The system is composed of

computer servers, data servers, and user

workstation. A compute server is a machine that

is available for use as a computational engine. A

data server is a machine that functions as a

repository for long-lived (that is persistent) data.

A user work station is a machine that provides a

programming environment for developing

applications and an interface with the computer

and data servers for executing those applications

on the servers.

Note that when a

disk is advocated with a computer server. It can

also set as a data server for other compare

servers. A cloud is a native kernel called Ra

(after the Egyptian sun god). It currently runs on

sun-3/50 and sun-3/60 computers an cooperators

with sun spare stations (running units) that

provide user interfaces.

6. Conclusions

The paper presents a comprehensive

summary of the ideals of a distributed operating

system. By having a microkernel, most of the

key features are implemented as user processes,

which mean that the system can evolve

gradually as change and we needs learn more

about distributed computing. The object-based

nature of the system and the use of capabilities

provide a unifying theme that holds the various

pieces together. We believe the parts of our

RPC package here discussed are of general

interest in several ways. They represent a

particular point in the design spectrum of RPC.

We believe that we have achieved very good

performance without adopting extreme

measures, and without sacrificing useful call

and parameter semantics.

Cloud computing is a major

development in information technology,

comparable in importance with the mainframe,

the minicomputer, the microprocessor, and the

Internet. It has the potential to make an

increasingly significant contribution to

economic activity throughout the world. This

potential will only be realized if cloud

computing products and services are portable

and interoperable.

7. References

[1] G. Couloirs, J. Dollimore, and

T. Kinberg, Distributed Systems -

Concepts and Design, 4th

Edition, Addison-Wesley,

Pearson Education, UK, 2001.

[2] R. Buyya (editor), High Performance Cluster

Computing, Prentice Hall, USA, 1999.

[3] Tanenbaum, A.S., van Staveren, H., Keizer,

E.G., and Stevenson, J.W.: "A Practical

Toolkit for Making Portable Compilers,"

Commun. ACM, vol. 26, pp. 654-660, Sept.

1983.

[4] R. Subramanian and B. Goodman (editors),

Peer-to-Peer Computing: Evolution of a

Disruptive Technology, Idea Group Inc.,

Hershey, PA, USA, 2005.

