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Abstract: Redundant basis (RB) multipliers over 

Galois Field (GF (2
m

)) have gained huge popularity 

in Elliptic Curve Cryptography (ECC) mainly 

because of their negligible hardware cost for 

squaring and modular reduction. Elliptic Curve 

Cryptography (ECC) is an approach to public key 

cryptography based on the algebraic structure 

of elliptic curves over finite fields. In this paper, we 

have proposed a novel recursive decomposition 

algorithm for RB multiplication to obtain high 

throughput digit serial implementation. Through 

efficient projection of Signal Flow Graph (SFG) of 

the proposed algorithm, a highly regular Processor 

Space Flow Graph (PSFG) is derived. In this project 

we are deriving three novel multipliers which not 

only involve significantly less time complexity than 

the existing ones but also require less area and less 

power consumption compared with the others. Both 

theoretical analysis and synthesis results confirm the 

efficiency of proposed multipliers over the existing 

ones. The synthesis results for Field Programmable 

Gate Array (FPGA) and Application Specific 

Integrated Circuit (ASIC) realization of the 

proposed designs and competing existing designs are 

compared. The extension for the project is Dadda 

multiplier. The Dadda multiplier is a hardware 

multiplier design similar to the Wallace multiplier, 

but it is slightly faster (for all operand sizes) and 

requires fewer gates (for all but the smallest operand 

sizes). Simulation and synthesis results are obtained 

by using Xilinx ISE 13.2, which when compared with 

proposed and extension results in the reduction of 

area, increasing the speed. 
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I.  INTRODUCTION 

 

Finite field multiplication over F(2
m
) is a basic 

operation frequently encountered in modern 

cryptographic systems such as the ECC and error 

control coding. Moreover, multiplication over a finite 

field can be used further to perform other field 

operations, e.g., division, exponentiation and inversion. 

Multiplication over F (
m
) can be implemented on a 

general purpose machine, but it is expensive to use a 

general purpose machine to implement cryptographic 

systems in cost sensitive consumer products. Besides, a 

low end microprocessor cannot meet the real time 

requirement of different applications since word length 

of these processors is too small compared with the order 

of typical finite fields used in cryptographic systems. 

Most of the real time applications therefore, need 

hardware implementation of finite field arithmetic 

operations for the benefits like low cost and high 

throughput rate. 

     In this paper, we aim at presenting efficient digit 

level serial/parallel designs for high throughput finite 

field multiplication over based on RB. We have 

proposed an efficient recursive decomposition scheme 

for digit level RB multiplication and based on that we 

have derived parallel algorithms for high throughput 

digit serial multiplication. We have mapped the 

algorithm to three different high speed architectures by 

mapping the parallel algorithm to a regular 2 

dimensional Signal Flow Graph (SFG) array, followed 

by suitable projection of SFG to 1 dimensional 

Processor Space Flow Graph (PSFG) and the choice of 

feed forward cut set to enhance the throughput rate. Our 

proposed digit serial multipliers involve significantly 

less area time power complexities than the 

corresponding existing designs. Field Programmable 

Gate Array (FPGA) has evolved as a mainstream 

dedicated computing platform. 

     Dadda multipliers are a refinement of the parallel 

multipliers presented by Wallace multiplier. Dadda 

multiplier consists of three stages. The partial product 

matrix is formed in the first stage by AND gates. In the 

second stage, the partial product matrix is reduced to a 

height of two. Dadda replaced Wallace Pseudo adders 

with parallel (n, m) counters. A Parallel (n, m) counter 

is a circuit which has n inputs and produce m outputs 

which provide a binary count of the ONEs present at the 

inputs. A full adder is an implementation of a (3, 2) 

counter which takes 3 inputs and produces 2 outputs. 

Similarly a half adder is an implementation of a (2, 2) 

counter which takes 2 inputs and produces 2 outputs. 
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     The Dadda multiplier reduces the number of rows as 

much as possible on each layer at the same time Dadda 

multiplier do as few reductions as possible. Because of 

this, Dadda multipliers have less expensive reduction 

phase, but the numbers may be a few bits longer, thus 

requiring slightly bigger adders. 

 

II. Derivation of Proposed High throughput Structures 

for RB Multipliers 

 

A. Proposed Structure  I : 

 

 

 

Fig. 1 Signal Flow Graph (SFG) for parallel realization 

of RB multiplication (a) The proposed SFG (b) 

Functional description of S node, where S I node 

performs circular bit shifting of one position and S II 

node performs circular bit shifting by Q positions (c) 

Functional description of M node (d) Functional 

description of A node 

     The RB multiplication can be represented by the 2 

dimensional SFG (shown in Fig. 1) consisting of 

parallel arrays, where each array consists of bit shifting 

nodes (S node), multiplication nodes (M nodes) and 

addition nodes (A nodes). There are two types of S 

nodes (S I node and S II node). Function of S nodes is 

depicted in Fig. 1(b), where S I node performs circular 

bit shifting by one position and S II node performs 

circular bit shifting by Q positions for the reduction 

requirement. Functions of M nodes and A nodes are 

depicted in Fig. 1(c) and 1(d) respectively. Each of the 

M nodes perform an AND operation of a bit of serial 

input operand with bit shifted form of operand, while 

each of the A nodes performs an XOR operation. The 

final addition of the output of arrays of Fig. 1 can be 

performed by bit by bit XOR of the operands in (Q 1) 

number of A nodes as depicted in Fig. 1. The desired 

product word is obtained after the addition of parallel 

output of the arrays. 

     For digit serial realization of RB multiplier, the SFG 

of Fig. 1 can be projected along j direction to obtain a 

PSFG as shown in Fig. 2, where P input bits are loaded 

in parallel to multiplication nodes during each cycle 

period. 

 

 
 

Fig. 2 Processor Space Flow Graph (PSFG) of   digit serial 

realization of finite field RB multiplication (a) The proposed 

PSFG (b) Functional description of add accumulation (AA) 

node 

The functions of nodes of PSFG are the same as those of 

corresponding nodes in the SFG of Fig. 1 except an extra 

add accumulation (AA) node. The function of the AA node 

is described in Fig. 2(b), to execute the accumulation 

operation for Q cycles to yield the desired result thereafter. 
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Fig. 3 Cut set retiming of PSFG of finite field RB 

multiplication over GF (2
m
) Where „D‟ denotes delay 

  For efficient realization of a digit serial RB multiplier, 

we can perform feed forward cut set retiming in a 

regular interval in the PSFG as shown in Fig. 3. As a 

result of cut set retiming of the Fig. 3, the minimum 

duration of each clock period is reduced to (TA+TB), 

where TA and TB denote the delay of an AND gate and 

an XOR gate  respectively. 

 

Fig. 4 Proposed Structure I for RB multiplier                

(a) Proposed cut set retiming of PSFG when                

(b) Detailed internal structure of merged regular PPGU 

(c) Corresponding PS I for the case d=2 

For example, to obtain the proposed structure for d=2 , a 

pair of S nodes, a pair of M nodes and a pair of A nodes 

of the PSFG of Fig. 3 can be merged to form a macro 

node as shown within the dashed lines in Fig. 4. Each of 

these macro nodes can be implemented by a new PPGU 

to obtain a PPGM of p/2 PPGUs as shown in Fig. 4(b), 

which consists of two AND cells and two XOR cells 

(the first PPGU requires only one XOR cell).  

      The critical path of the structure of Fig. 4(c) 

amounts to (TA+2TX). The first output of desired 

product is available from this structure after a latency of 

(P/2+Q) cycles, while the successive outputs are 

available thereafter in each Q cycles of duration 

(TA+2TX).  

 

B. Proposed Structure II : 

We can further transform the PSFG of Fig. 3 to reduce 

the latency and hardware complexity of PS I. To obtain 

the proposed structure, (P 1) serially connected A nodes 

of the PSFG of Fig. 3 are merged into a pipeline form of 

(P 2) A nodes as shown within the dashed box in Fig. 

5(a). These pipelined A nodes can be implemented by a 

pipelined XOR tree, as shown in Fig. 5(b). Since all the 

AND cells can be processed in parallel, there is no need 

of using extra “0”s on the input path to meet the timing 

requirement in systolic pipeline. The critical path and 

throughput of PS II are the same as those of PS I. 

Similarly, PS II can be easily extended to larger values 

of  „d‟  to have low register complexity structures. 
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Fig. 5 Proposed Structure II for RB multiplier, where 

„R‟ denotes a register cell (a) Modified PSFG              

(b) Structure of RB multiplier 

C. Proposed Structure III : 

Since the S nodes of Fig. 3 perform only the bit 

shifting operations they do not involve any time 

consumption. Therefore, we can introduce a novel cut 

set retiming to reduce the critical path further, as 

shown in Fig. 6(a). It can be observed that the cut set 

retiming allows to perform the bit addition and bit 

multiplication concurrently, so that the critical path is 

reduced to max {TA, TX} = TX, i.e., the throughput of 

the design is increased. 

 

 

Fig. 6 Novel cut set retiming of PSFG and its 

corresponding structure Proposed structure III              

(a) Cut set retiming (b) BPM and PPGM of Proposed 

Structure III 

III. Extension Work 

The extension can be done using Dadda multiplier, to 

reduce the delay. The process of Dadda multiplication is 

as follows: 

     The entire 16 × 16 multiplication requires six stages. 

Always the first stage is partial products stage, which is 

obtained by simple multiplication of multiplicand with 

multiplier. The number of rows (height) present at this 

stage is 16. Now reduce the number of rows further in 

such a way that final stage contains only two rows. For 

this, Dadda introduces a sequence of intermediate 

matrix heights that provides the minimum number of 

reduction stages for a given size multiplier. This 

sequence determined by working back from the final 

two row matrix, limit the height of each intermediate 

matrix to the largest integer that is no more than 1.5 

times the height of its successor.  
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Fig. 7 Schematic of Dadda Multiplier 

     Dadda proposed a method of reduction which 

achieves the reduced two rowed partial products in a 

minimum number of reduction stages. Dadda succeeded 

this, by placing the (3,2) and (2,2) counters in maximum 

Critical path in optimal manner. For an N bit multiplier 

and multiplicand, there results N by N partial products. 

These partial products are arranged in the form a Matrix. 

Dadda reduced these Matrix height to a two rowed 

matrix, through a sequence a reduction stages. 

Algorithm: 

 

 1. Multiply (that is AND) each bit of one of the 

arguments, by each bit of the other, yielding N2 results. 

 2. Reduce the number of partial products to two layers 

of full and half adders. For this Dadda reduction scheme 

uses the following algorithm: 

(a) Let d1= 2 and dj+1 = [3.dj / 2], where dj is the 

matrix height for the j th stage from the end. Find the 

largest j such that at least one column of the matrix has 

more than dj bits. 

(b) Employ (3, 2) and (2, 2) counters to obtain a reduced 

matrix with no more than dj elements in any column.  

c) Until a matrix with only two rows is generated. Let 

j=j 1 and repeat step (b) 

3. Group the wires in two numbers, and add them with a 

conventional adder. 

 

Flow Chart: 

 

 
 

Fig. 8 Flow Chart for Dadda Multiplier 

 

IV. RESULTS 

 

The written Verilog HDL Modules have 

successfully simulated and synthesized using Xilinx ISE 

13.2. 

 

Simulation Results: 

For Simulation results shown in Fig. 9, we have      

taken clk=1, rst=0, a, b, c as inputs, c, y has been 

obtained as outputs.  

 
 

Fig. 9 Simulation result for Proposed Structure I 
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For Simulation results shown in Fig. 10, we have      

taken clk=1, rst=0, a, b, as inputs, y has been obtained 

as outputs.  

 
 

Fig. 10 Simulation result for Proposed Structure II 

 

For Simulation results shown in Fig. 11, we have      

taken clk=0, rst=0, a, b, as inputs, y has been obtained 

as outputs.  

 
 

Fig. 11 Simulation result for Proposed Structure III 

 

For Simulation results shown in Fig. 12, we have      

taken clk=1, rst=0, a, b, as inputs, c has been obtained as 

outputs.  

 

 
 

Fig. 12 Simulation result for Dadda Multiplier 

 

RTL Schematic: 

 

 
 

Fig. 13 RTL Schematic for Proposed Structures 

 

The RTL Schematic of Proposed Structure is shown in 

Fig.13 which consists of a combinational multipliers and 

an accumulator. Combinational multiplier is a multiplier 

which is used to compute the final result by computing 

partial products in parallel. An accumulator is a storage 

device from where the final output is obtained. 

Device Utilization Summary: 

 

Table 1: Device Utilization Summary for Proposed 

Structures 

 

Device Utilization Summary(estimated value) 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

95 4656 2% 

Number of Slice 

Flip flops 

32 9312 0% 

Number of 4 

input LUTs 

170 9312 1% 

Number of 50 232 21% 
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bonded IOBs 

Number of 

GCLKs 

1 24 4% 

 

 

Table 2: Device Utilization Summary for Dadda 

Multiplier 

 

Device Utilization Summary(estimated value) 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

68 4656 1% 

Number of 4 

input LUTs 

120 9312 1% 

Number of 

bonded IOBs 

34 232 14% 

Number of 

GCLKs 

1 24 4% 

 

Table 3: Comparison of the Proposed and Extension 

results  

 

  AREA  DELAY 

 No. of 

Slices 

No. of 

LUTs 

No. of 

FFs 

(ns) 

PROPOSED 95 170 50 4.063ns 

EXTENSION 68 120 34 4.04ns 

 

Comparison of the Proposed and Extension results vary 

in  area and  delay which shows that there is a decrease 

in them and the performance is more better. The delay 

for proposed structure is 4.063ns whereas, for dadda 

mutiplier is 4.04ns. 

 

V. CONCLUSION 

We have proposed a novel recursive decomposition 

algorithm for RB multiplication to derive high 

throughput digit serial multipliers. By suitable 

projection of SFG of proposed algorithm and identifying 

suitable cut sets for feed forward cut set retiming, three 

novel high throughput digit serial RB multipliers are 

derived to achieve significantly less area time 

complexities than the existing ones. The extension for 

the project is Dadda multiplier. The Dadda multiplier is 

a hardware multiplier design similar to the Wallace 

multiplier, but it is slightly faster (for all operand sizes) 

and requires fewer gates (for all but the smallest 

operand sizes).Simulation and synthesis results are 

obtained by using Xilinx ISE 13.2, which when 

compared with proposed and extension results in the 

reduction of area, increasing the speed. 
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