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Abstract: In this paper, we propose a novel probabilistic approach 

that judiciously combines localized monitoring, location estimation 

and node collaboration to detect node failures in mobile wireless  

networks. Specifically, we propose two schemes. In the first 
scheme, when a node A cannot hear from a neighboring node B, it 

uses its own information about B and binary feedback from its 

neighbors to decide whether B has failed or not. In the second 
scheme, A gathers information from its neighbors, and uses the 

information jointly to make the decision. The first scheme incurs  

lower communication overhead than the second scheme. On the 

other hand, the second scheme fully utilizes information from the 
neighbors and can achieve better performance in failure detection 

and false positive rates and incur low communication overhead. 

Keywords: Mobile Wireless Networks, Node Failure, Node 

Failure Detection, Network Management, Fault 

Management.  
I. INTRODUCTION 

Mobile wireless networks have been used for many 

mission crit ical applicat ions, including search and rescue, 

environment monitoring, d isaster relief, and military  

operations. Such mobile networks are typically formed in an 

ad-hoc manner, with either persistent or intermittent network 

connectivity. Nodes in such networks are vulnerable to 

failures due to battery drainage, hardware defects or a harsh 

environment. Node failure detection in mobile wireless 

networks is very  challenging because the network topology 

can be highly dynamic due to node movements. Therefore, 

techniques that are designed for static networks are not 

applicable. Secondly, the network may not always be 

connected. Therefore, approaches that rely on network 

connectivity have limited applicability. Th ird ly, the limited  

resources (computation, communicat ion and battery life) 

demand that node failure detection must be performed in a 

resource conserving manner. Node failure detection in  

mobile wireless networks assumes network connectivity. 

Many schemes adopt probe-and-ACK (i.e ., ping) or 

heartbeat based techniques that are commonly used in 

distributed computing. Probe-and-ACK based techniques 

require a central monitor to send probe messages to other 

nodes. When a node does not reply within a timeout interval, 

the central monitor regards the node as failed. Heartbeat 

based techniques differ from probe-and-ACK based 

techniques in that they eliminate the probing phase to reduce 

the amount of messages. Several existing studies adopt 

gossip based protocols, where a node, upon receiving a 

gossip message on node failure information, merges its 

information with the information received, and then 

 

broadcasts the combined in formation. A common drawback 

of probe-and-ACK, heartbeat and gossip based techniques is 

that they are only applicable to networks that are connected. 

In addition, they lead to a large amount of network-wide 

monitoring traffic. In contrast, our approach only generates 

localized monitoring traffic and is applicable to both 

connected and disconnected networks. 

II. EXISTING AND PROPOSED SYSTEMS

A. Exis t ing System 

One approach adopted by many existing studies is based  
on centralized monitoring. It  requires that each node send 

periodic “heartbeat” messages to a central monitor, which 

uses the lack of heartbeat messages from a node (after a 

certain timeout) as an indicator of node failure. Th is 

approach assumes that there always exists a path from a 

node to the central monitor, and hence is only applicable to 

networks with persistent connectivity. Another approach is 

based on localized  monitoring, where nodes broadcast 

heartbeat messages to their one-hop neighbors and nodes in 

a neighborhood monitor each other through heartbeat 

messages. Localized monitoring only  generates localized 

traffic and has been used successfully for node failure 

detection in static networks. 

B. Proposed System  
In this paper, we propose a novel probabilistic approach 

that judiciously combines localized monitoring, location 

estimation and node collaboration to detect node failures in 

mobile wireless networks. Specifically, we propose two 

schemes. In the first scheme, when a node A cannot hear 

from a neighboring node B, it uses its own information about 

B and binary feedback from its neighbors to decide whether 

B has failed or not. In the second scheme, A gathers 

informat ion from its neighbors, and uses the information 

jointly  to make the decision. The first scheme incurs lower 

communicat ion overhead than the second scheme. On the 

other hand, the second scheme fu lly utilizes information 

from the neighbors and can achieve better performance in 

failure detection and false positive rates.  
1. Advantages of Proposed System 

Simulation results demonstrate that both schemes 

achieve high failure detection rates, low false positive 
rates, and incur low communication overhead.

Our approach has the advantage that it is applicable to 
both connected and disconnected networks.
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Compared to other approaches that use localized  

monitoring, our approach has similar failure detection 

rates, lower communication overhead and much lower 

false positive rate.

Our approach only generates localized  monitoring  

traffic and  is applicable to both connected and 

disconnected networks.

Fig .1. System Architecture 

C. Modules 

We have 3 main Modules. 

Localized Monitoring Module

Location Estimation Module

Node Collaboration Module

1. Module Description 
Localized Monitoring: Localized monitoring only  

generates localized  traffic and has been used 

successfully for node failu re detection in  static 

networks.

Location Estimat ion: By localized monitoring, Node 

only knows that it can no longer hear from other 

neighbor nodes, but does not know whether the lack of 

messages is due to node failure or node moving out of 

the transmission range. Location estimation is helpfu l 

to resolve this ambiguity.

Node Collaboration: Through this module, we can  
improve the decisions which are taken during Location 

estimation module.

III. PERFORMANCE EVALUATION

We evaluate the performance of our schemes through 

extensive simulations using a purpose-built simulator. The 

simulator is built using Matlab. The main reason for using 

the purpose built simulator instead of other simu lators (e.g., 

ns3 [2]) is because it provides much more flexib ility in  

implementing the node failu re detection algorithms that are 

proposed in the paper. Implementing location estimation (an  

important part of our algorithms) presented-B3 is 

particularly convenient in Matlab (because of many readily  

available mathematical libraries) than that in other network 

simulators. In the following, we first describe the simulation  

setting, and then describe the evaluation results. 

A . Simulation Setting  
In all the simulations, the nodes move in  a 500m × 500m 

square area. The total number of nodes, N, is varied  from 20 

to 150. The in itial locations of the nodes follow a 2D 

Poisson distribution. The transmission range of a node is 

circular with the radius, r, varied  from 30m to 130m (our 

schemes can be applied to irregular transmission ranges; 

evaluation under those settings is left as future work). The 

above combination of parameters leads to a wide range of 

neighborhood density for evaluating our approach (see the 

range of neighborhood density). We evaluate our schemes 

with three mobility models: the random waypoint model [9], 

the smooth random model [7] and the Levy walk model. The 

random waypoint model is widely used in mobile network 

studies. We have applied the fix described to overcome its 

limitat ions. The smooth random model is a variant of the 

random waypoint model in that it changes the speed and 

direction of node movement incrementally  and smoothly. 

The Levy walk model is reported to contain some statistical 

similarity to human walks, where the travel distance (i.e., 

flight length) of each movement follows a heavy-tail 

distribution. Each node sends a burst of K heartbeat 

messages in each time unit of δ seconds. We also refer to the 

time un it as the heartbeat interval, and use the terms 

interchangeably. For simplicity, we assume independent 

node failures and packet losses. In addition, we assume 

homogeneous node failure probability and packet loss 

probability. We remark that our schemes do not have these 

assumptions. 
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Because  of  the  homogeneity  assumption,  we  omit failed, A simply suspects that  B  has failed and sends an 

superscripts  and  use  pd  and  pc  to  represent  node  failure inquiry to its neighbors. If none of A’s neighbors reply that  
probability and packet loss probability, respectively. In our B is alive, then A sends a message to the manager node that  

simulations, pd is varied from 0.01 to 0.05; pc is varied from B has failed. In the following,  we first report the results  

0.001 to 0.1. The above choices of pd  and pc  cover a wide when the heartbeat interval is one second (i.e., δ = 1 sec), 
range of settings. Our scheme also works for higher or lower assuming the failure and packet loss probabilities are known 

pd; we briefly describe the cases of larger pc  (larger pc can and the standard deviation of the location measurement error 
lead to lower confidence in detecting failures). We assume is  1m.  We  then  investigate  the  impact  of  probability 

that pd  and pc  are not known, but can be estimated. The estim at ion erro rs, locat io n meas ur em e nt error s, and heartb e at 
maximum relative estimation error is denoted as err. The interval. We only report the results under random waypoint 

location  measurement  error  is  assumed  to  be  zero  mean model;  the  results  under  the  smooth  random  model  are 

Gaussian white noise with the standard deviation, σw  (refer similar. 

to), varied from 1m to 10m. There is no interference model   Choice of Threshold θ: We set the detection threshold, 

in the simulator. Adding an interference model will lead to θ, to 0.7, 0.8 or 0.9, and observe similar results (as  

different  characteristics  of packet  losses,  which  is left  as  explained). All the results presented below use θ = 0.8. 

future work. In each simulation run, we start with a warm-up   Choice of K: To deal with packet losses, a node sends a 

phase of 20 seconds and then simulate node failures. For burst of K heartbeat messages in each time unit. For the 

simplicity, node failures are simulated at each time unit, and binary feedback scheme, we can derive the minimum K 
 

we stop the simulation when at least one node fails. For each that  is  needed  for  failure  node  detection  from  the 

setting,  we  repeat  the  simulation  at  least  100  times,  and necessary condition. Specifically, under our assumption 

present the average results; the confidence intervals are tight  of indepe n de nt pack et losses, pc, K = pK
c, and we have

and hence omitted for clarity. The performance metrics are 
≥

l og ⁡(  / −   )−       1−  

(1)  
(1) detection rate, defined as the number of failures that are  

detected  successfully  divided  by  the  actual  number  of For instance, when θ = 0.8 and pd = 0.01, the minimum 

failur es , (2) false posi tiv e rate, defin ed as the numbe r of false  K is 1, 2 and 3 for pc  = 0.001, pc = 0.05 and pc = 0.1, 

alarm s (i.e., a node is conside re d to be failed but actua lly it is respectively. For all the settings we explored, a small value 

not) divided by the number of alarms that are raised, and (3) of  K  (no  more  than  3)  is  sufficient  to  achieve  good 

communication overhead, defined as the average number of perfo rm an c e . The abov e is for indep e nd e nt losse s. When that 

messages sent per second during the entire detection period. is not the case (i.e., pc, K > pK
c), the minimum K can be

We evaluate the performance of both of our schemes. In the larger than that under independent losses. For the non-binary 

following, we mainly report the performance of the binary feed ba c k  sche m e ,  we  can  deriv e  the  minim u m  K  that  is 

feedback scheme, and “our scheme” henceforth refers to this  needed  for  failure  node  detection  from  the  necessary 

scheme.  The  non-binary  scheme  mainly  differs  from  the condition. Specifically, under our assumption that p(i)
c,K  =

binary schem e in  the minimum required  K for  effective 
p

c, K
 =  p Kc,∀i,  we hav e

/ −   −log ⁡(1−  )

failure node detection and   communication overhead, ≥

l og

(2)  
 

simulation results on these two aspects are, respectively. In 
Comparing (1) and (2), it is easy to see that the minimum  

the  following, we  present evaluation  results  under the 
 

K required for the non-binary scheme can be significantly 
random waypoint model and the smooth random model, first  

smaller than that for the binary scheme. For instance, our 
in connected networks and then in disconnected networks. 

simulation results show that when pd  = 0.01; pc = 0.01; N = 
At the end, we briefly present the results under the Levy 

8 0 , an d  r = 8 0m, the b in ary scheme req uires K ≥ 2, while

walk model. 
th e n o n -binary  sch eme on ly  req uires K ≥ 1. Last, fo r a giv en

B. Evaluation Results for Connected Networks 
scenario,  both  the  binary  and non-binary schemes  can 

achieve high failure detection rate and low false positive rate 
The evaluation setting for connected networks is 

using the  minimum required K derived  from (1) and  (2)  
motiv ate d by the robotic sensor network application. The 

 

respectively. 
netw or k is conne c te d at every point of time. A mana g er node 

is in the central region of the area. Node failure alarms are 

sent to the mana g e r node . We consid er three node move m e nt 

speed ranges: low speed range of [1; 5]m/s, medium speed 

range of [5; 10]m/s , and high spee d range of [10; 15]m /s. We 

compare  our  scheme  to  two  schemes,  referred  to  as 

cent ra l ize d and local iz e d sche m e s, motiv ate d by the schem e s 

in  [6],  and  the  scheme,  respectively.  In  the  centralized 

scheme, each node sends periodic heartbeat messages to the 

mana ge r node, whic h decid e s that a node has faile d when not 

hearing from the node. The localized scheme differs from 

our scheme only in that it does not calculate the probability  

of node failure. Specifically, when node A no longer hears  F ig .2 .  D etec tio n   R ate  and False  Positive Rate o f  Our 
from node B, instea d of calcu lat in g the proba bi li ty that B has 

Scheme (K = 2, pc = 0.01, pd = 0.01, σw = 1m, low speed). 
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C. Detection Rate and False Positive Rate  
In our setting, the neighborhood density ρ = πr2N/S,

where S = 500m×500m. Figs 2(a) and (b) p lot the detection 

rate and false positive rate of our scheme versus 

neighborhood density when K = 2, pc = 0.01, pd = 0.01, and 

nodes move at  low speed. The various neighborhood 

densities are obtained using the combinations of r (ranging 

from 30m to 140m) and N (ranging from 20 to 140). For 

clarity, we only plot the results for the combinations leading 

to neighborhood density of at least 1. In Fig. 2(a), we also 

plot the upper bound of the failure detection rate, since for 

the random waypoint model the node distribution can be 

well approximated by a 2D Poisson distribution [8]. Observe 

that the detection rates of our scheme are very close to the 

upper bound, indicating that our scheme achieves very good 

detection rates. As expected, the detection rate increases 

while the false positive rate decreases with neighborhood 

density. Specifically, when the neighbor density is above 3, 

our scheme achieves a detection rate of above 0.9 and a false 

positive rate of below 0.02. The performance is worse when 

nodes move faster (figures omitted). This is expected. 

Consider an arbitrary  node, A, that is in the neighborhood of 

node B at  time t . When nodes move fast, A is more likely to  

be out of the range of B at time t+1, which is more likely to 

lead to missed detections (when B fails) or false positives 

(when B does not fail). We next compare the detection rate 

and false positive rate of our scheme and the other two  

schemes. Under ideal network conditions (i.e., packet  delays 

and losses are negligible), the centralized scheme can always 

detect failed nodes and does not cause false alarms. On  the 

other hand, as we shall see, its communication overhead is 

much h igher than that of our scheme. The detection rate of 

the localized scheme is no less than that of our scheme since 

when our scheme detects a node failure, the localized  

scheme can detect that node failure as well. However, the 

localized scheme suffers from many more false positives. 

Fig. 3 p lots the detection rate and false positive rate of our 

scheme and the localized scheme when the transmission 

range is varied  from 60 to 130m, and the number of nodes in 

the area is 80. We observe that the detection rate of our 

scheme is slightly lower than that of the localized scheme, 

while the false positive rate of our scheme is much lower 

than that of the localized scheme. For instance, when r = 

60m, the false positive rate under our scheme is 0.01 versus 

0.27 under  

Fig.3. Comparing Detection Rate and False Positive Rate of 

Our Scheme and the Localized Scheme (K = 2, N = 80, pc = 

0.01, p d = 0.01, σw = 1m, high speed). 

Fig.4. An Example That Illustrates False Positives in the 
Localized Scheme 

the localized  scheme. We also plot the results for the non 

binary feedback scheme, which has slightly better 

performance than the binary feedback scheme. The much  

lower false positive rate under our scheme is because of its 

ability to differentiate a node failure from the node moving  

out of the transmission range, while the localized scheme 

cannot differentiate these two cases. Fig. 4 shows an 

example observed in the simulations. Nodes A and B are 

within each other’s transmission range at time t, and are out 

of each other’s transmission range at time t+1. In the 

localized scheme, since A cannot hear from B at time t+1, it  

suspects that B has failed, and broadcasts an inquiry to its 

one-hop neighbors. Since none of A’s neighbors is in B’s 

transmission range at time t + 1, A does not hear anything 

from its neighbors about B, and concludes that B has failed. 

Similarly, B concludes that A has failed. Therefore, the 

localized scheme leads to two false positives in this example. 

Our scheme does not lead to  any false positive since A finds 

the probability that B has failed is below the threshold, and 

hence does not suspect that B has failed; similarly, B does 

not suspect that A has failed. 

D. Communication Overhead  
Let H denote the average number of hops from a node to 

the manager node. The centralized scheme leads to an 

average of N×K×H messages in each time unit, where N is 

the number of nodes and K is the number of heartbeat 

messages per time unit. In our scheme and localized s cheme, 

the number of heartbeat messages is N × K in each time unit, 

significantly lower than that of the centralized scheme 

especially when H is large. In addit ion to heartbeat 

messages, our scheme and the localized scheme also lead to 

two other types of messages: one is the localized inquiries 

and responses during node collaboration (on average 

K×(1+ρ) messages since each inquiry and the corresponding 

responses are sent K times to deal with packet losses), the 

other refers to the alerts sent to the manager  node (on 

average K × H messages). Fig. 5 plots communication  

overhead for the three schemes versus transmission range 

when K = 2, pc = 0.01, pd = 0.01, σw = 1m, N = 120, and 

nodes move at high speed. For all three schemes, when 

sending a message to the manager node, we use shortest-path 

routing and ignore the message overhead caused by routing 

(this is in favor of the centralized scheme which  may incur 

increased overhead due to routing because of more frequent 

messages to the manager node). 
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Fig.5. Communicat ion Overhead of the Three Schemes (K = 

2, Pc  = 0.01, Pd = 0.01, Σ w = 1m, N = 120, High Speed).  

Fig.6. Impact of Estimation Errors in  pd (K = 2, pc = 0.01, pd 

= 0.03, r = 80m, σw = 1m, High Speed). 

We observe that the centralized  scheme leads to much  

higher communication overhead than our scheme. 

Furthermore, the localized scheme also leads to higher 

communicat ion overhead than our scheme, which is due to 

two reasons. First, the localized scheme has more inquiries 

and responses during node collaboration. Suppose node A 

hears from node B at t ime t  but not at time t+1. In  the 

localized scheme, A will suspect that B has failed, lead ing to 

an inquiry from A and the corresponding responses from A’s 

neighbors. In our scheme, A only sends an inquiry when the 

failure probability of B is larger than the threshold. 

Secondly, the localized scheme leads to more alerts to the 

manager node due to more false alarms. Of all the settings 

we exp lore, when the neighborhood density is larger than 3, 

the communication overhead of the centralized scheme is 3.4 

to 5.0 times as large as that of our scheme; the 

communicat ion overhead of the localized scheme is  1.9 to  

2.3 t imes as large as that of our scheme. In the above, “our 

scheme” refers to the binary feedback scheme. Fig. 5 also 

plots the results for the non-binary feedback scheme when K 

= 2 and K = 1, respectively. 

Fig.7. Impact of Estimation Errors in pc (K = 2, pc = 0.03, pd 

= 0.01, r = 80m, σw = 1m, High Speed). 

As explained in Section III-B2, the non-binary scheme 
requires K≥  1 while the b inary scheme requires K ≥  2 for 
this setting. When K = 2, the communication overhead of the 
non binary scheme using is larger than that of the binary 
scheme, while is lower than that of the localized scheme. 
When K = 1, the non-binary  scheme leads to lower overall 
communicat ion overhead compared to the binary scheme 
that uses K = 2 because the number of heartbeat messages is 
reduced by half. Last, note that with the number of nodes 
fixed the centralized scheme’s communication overhead 
decreases with the transmission range (due to shorter routes 
to the manager node), while for our scheme and localized  
scheme, the communicat ion overhead increases with  the 
transmission range due to more nodes in the neighborhood 
and hence more responses during node collaboration. Th is 
indicates the tradeoffs between schemes that use centralized  
monitoring and those using localized monitoring. If the 
transmission range is large enough that the routes to the 
manager node are comparatively short (meaning that the 
effective neighborhood density is high), it might be 
beneficial to use schemes based on centralized monitoring, 
and vice versa. 

E. Impact of Probability Estimation Errors  

We now investigate the impact of estimation errors in pd 

and pc on the performance of our scheme. The relative 

estimation error is up to 66.6%. We next  present results 
under two settings where the relative estimat ion error is 

66.6%. In Fig. 6, the actual pd is 0.03, while the estimated pd 

is 0.01 or 0.05. We observe that the performance of our 

scheme when using the estimated pd is similar to that when 

using the actual pd. Fig.7 plots the performance of our 

scheme when the actual pc is 0.03, while the estimated pc is 
0.01 or 0.05. We again observe similar performance when 

using the estimated pc and the actual pc. Th is demonstrates 

that, as explained, our scheme is not sensitive to estimation  

errors in  pc and pd. We have also investigated the cases 

when both the estimates of pd and pc have erro rs. The results 

again confirm that our scheme is not sensitive to estimation  

errors in pd and pc (figures omitted). 
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heartbeat intervals also lead to longer delays in detecting 

node failures, which is undesirable for many applications. 

Fig .8. Impact of Location Measurement Deviation (K = 2, pc 

= 0.01, p d = 0.01, r = 80m, N = 100). 

1. Impact of Location Measurement Errors: Fig. 8(a) plots

the detection rate of our scheme while increasing σw, the 

standard deviation of the measurement noise, from 1m to  

10m. The results under both low and high movement speeds 
are shown in the figure. We observe that when increasing 

σw, the detection rate first decreases slowly, and then 

decreases sharply when σw is above a certain value. This 

indicates that our scheme can tolerate inaccuracy in location 
measurements. Fig. 8(b) plots the false positive rate of our 

scheme versus σw. When increasing σw, the false positive 

rate under low speed remains low while the false positive 
rate under high speed decreases. This is consistent with  the 

lower detection rates when increasing σw: when location 

prediction is inaccurate, the confidence in  node failure 
probability is low, leading to missed detections as well as 
fewer false positives. 

2. Impact of Heartbeat Interval: So far all the results are

obtained when the heartbeat interval is one second. When 

increasing the heartbeat interval, the communication  

overhead decreases. On the other hand, the location 

estimation becomes less accurate. In addition, a node, A, in  

the neighborhood of another node, B, is more likely to be 

outside of the neighborhood of B in  the next heartbeat 

interval. Both factors may have adverse impact on the 

detection rate and false positive rate. Fig.9 plots the 

detection rate and the false positive rate of our scheme when 

increasing the heartbeat interval from 1 to 10 seconds. As 

expected, the detection rate and the false positive rate 

degrade more slowly when node speeds are low, while 

degrade more quickly when node speeds are high. Fig. 10 

plots the communication  overhead when increasing the 

heartbeat interval. As expected, the communication overhead 

decreases when increasing the heartbeat interval. On the 

other hand, when the heartbeat interval is large, inaccurate 

location estimation leads to more inquiries and responses as 

well as more messages to the manager node (due to 

increased false positive rate), causing the gain in 

communicat ion overhead to level off. The above indicates 

that it is not beneficial to set the heartbeat interval too large, 

especially when nodes move fast. In fact, in addition to 

degraded detection rate and false positive rate, larger 

Fig.9. Impact  of Heartbeat Interval on Detection Rate and 

False Positive Rate of Our Scheme (K = 2, pc = 0.01, pd = 

0.01, r = 80m, N = 100, σw = 1m).  

Fig.10. Impact of Heartbeat Interval on Communication 

Overhead of Our Scheme (K = 2, pc = 0.01, pd = 0.01, r = 
80m, N = 100, σw = 1m). 

F. Evaluation Results in Disconnected Networks   
The evaluation setting for disconnected networks is 

motivated by the hiking application. We consider low 

movement speed of [0.4-0.6]m/s and transmission range of 

50m. The number of nodes is varied from 30 to 100. There 

are 10 sinks distributed uniformly  randomly  in  the 

500m×500m area. The sinks are connected to a manager 

node located in the central region of the area. Due to low 

node density, the network only has intermittent connectivity. 

We use the following routing strategy. Suppose that node A 

generates an alarm that B has failed at time t. Then A 

transmits this message to all of its current neighbors. Each of 

these nodes (A and its neighbors) carries the informat ion; 

when one of them meets a sink, it uploads the information to  

the sink, which  in  turn relays the informat ion to the manager 

node. In addition to performance metrics  described earlier, 

we consider another metric, discovery delay, which is the 

delay from when a node is found to be failed to when the 

message reaches the manager node (we assume neglig ible 

delay from a sink to the manager node). We only report the 

results under random waypoint model; the results under the 

smooth random model are similar. 
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communicat ion overhead (up to 80% lower). In addit ion, our 

approach has the advantage that it is applicable to both 

connected and disconnected networks. Compared to other 

approaches that use localized monitoring, our approach has 

similar failure detection rates, lower communication 

overhead (up to 57% lower) and much lower false positive 

rate (e.g., 0.01 versus 0.27 in some setting). 

Fig.11. Detection Rate and False Positive Rate in 

Disconnected Networks (K = 2, pc = 0.01, pd = 0.01, r = 

50m, σw = 1m).  

Fig.12. Communication Overhead and Discovery Delay  In 

Disconnected Networks (K = 2, pc = 0.01, pd = 0.01, r = 

50m, σw = 1m). 

Fig. 11 plots detection rate and false positive rate under 

two heartbeat intervals, δ = 1 and 10 seconds. The false 

positive rate under δ = 1 second is lower than that when δ = 

10 seconds. The detection rate under the two heartbeat 

intervals is similar, perhaps because of slow node 

movement. As expected, the detection rate increases with 

node density while the false positive rate decreases with  

node density. Even with only 30 nodes, the detection rate is 

above 0.6 and the false positive rate is below 0.05. Fig. 12 

plots communicat ion overhead and discovery delay. When δ 

= 10 seconds, the communication overhead is significantly  

lower than that when δ = 1 seconds, while the discovery 

delay is still in a few minutes. The discovery delay decreases 

when increasing the number of nodes since more nodes can 

carry the failure information, prov iding more opportunities 

to report the information to the sinks. 

IV. CONCLUSION

We have evaluated our two schemes using extensive 

simulation in  both connected and disconnected networks 

(i.e ., networks that lack contemporaneous end-to-end paths). 

Simulation results demonstrate that both schemes achieve 

high failu re detection rates, low false positive rates, and 

incur low communication overhead. Compared with  

approaches that use centralized monitoring, while our 

approach may have slightly lower detection rates and 

slightly higher false positive rates, it has significantly lower 
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