
 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1177

Software Metrics: An Essential Tool for

determining software success

 Ruchi Yadav & Pramod Kumar

 Dept. of Information & technology, Dronacharya College of Engineering

 Farruhknagar, Gurgaon, India

 Email:ruchiyadav477@gmail.com

Abstract

This paper describes software metrics as an

important and essential tool for measuring

success of various software’s in various

organizations. Software Metrics are tools for

anyone involved in software engineering to

understand varying aspects of the code base,

and the project progress. In regards to

software project cost and underestimation, it is

a problem that has not diminished in the last

70 years. The Standish Chaos Report (2004)

found only 29% of project met their criteria for

project success: projects that were on budget,

on schedule, and with the expected

functionality. The Standish Chaos Report also

estimated that the annual cost of cancelled

projects was $55 billion. It helps predict

defects in code and can be used to determine

code quality. The process of software

development, including documentation, design,

program, test, and maintenance can be

measured statistically. Therefore the quality of

software can be monitored efficiently. Software

metrics is very important in research of

software engineering and it has developed

gradually. In this paper, software metrics

definition were given and the history of and the

types of software metrics were overviewed.

Software complexity measuring is the

important constituent of software metrics and it

is concerning the cost of software development

and maintenance. In order to improve the

software quality and the project controllability,

it is necessary to control the software

complexity by measuring the related aspects.

1. Introduction

“What is not measurable, make

measurable”, the great Galileo Galilee had said.

Measurement has always been fundamental to

any engineering discipline and software

engineering is no exception. This is how

Pressman [8], introduces metrics. So what kind

of measurement is he talking about? Obviously

it should be something that gives us the ability

to evaluate software process – the design, the

code, the testing, etc. But does it end there?

Probably not. Metrics also cover the aspect of

evaluating the final software product and a lot

more. Several companies have implemented

metrics programs to support the managers in

their decisions. However the benefits from the

implementation are not as great as expected.

Nearly 80% of software metrics programs fail

within the first two years (Dekker‟s,

1999).Most currently used metrics concentrate

on the latter stages of development-coding and

testing. The author proposes a shift in focus

toward using metrics during the high-payoff

phases of software development-requirements

definition and design. A general methodology

that can assist the software manager and

developer in creating an effective software

metrics program is offered. This will increase

understanding and improvement of the

software development process at an early stage

in the software life cycle. It is noted that early

use of software metrics will allow the manager

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1178

to spend more time on error prevention and less

on error correction. This should yield cost and

time savings, and an improvement in software

product quality.

Software metric is a measure of some

property of a piece of software or its

specifications. Since quantitative

measurements are essential in all sciences,

there is a continuous effort by computer

science practitioners and theoreticians to bring

similar approaches to software development.

The goal is obtaining objective, reproducible

and quantifiable measurements, which may

have numerous valuable applications in

schedule and budget planning, cost estimation,

quality assurance testing, software debugging,

software performance optimization, and

optimal personnel task assignments.

2. Software Metrics

2.1 Definition of Software Metrics

The definition of software metrics has

taken various forms since its inception. Metrics

are quantitative measures that enable software

people to gain insight into the efficacy of

software process and also pinpoint problem

areas . They provide requisite information for

quantitative managerial decision making as

well as support for risk assessment and

reduction. They can be considered an objective

mathematical measure of software that is

sensitive to difference in software

characteristics. According to the IEEE standard

glossary of Software Engineering Terms ,they

are “a quantitative measure of the degree to

which a system, component, or process

possesses a given attribute.”.

Software Metrics are tools for anyone involved

in software engineering to understand varying

aspects of the code base, and the project

progress. They are different from just testing

for errors because they can provide a wider

variety of information about the following

aspects of software systems:

• Quality of the software, different

metrics look at different aspects of quality, but

this aspect deals with the code.

• Schedule of the software project on the

whole. I.e. some metrics look at functionality

and some look at documents produced.

• Cost of the software project. Includes

maintenance, research and typical costs

associated with a project.

• Size Complexity of the software

system. This can be either based on the code or

at the macro-level of the project and its

dependency on other projects.

Software metrics are used to obtain objective

reproducible measurements that can be useful

for quality assurance, performance, debugging,

management, and estimating costs. Finding

defects in code (post release and prior to

release), predicting defective code, predicting

project success, and predicting project risk.

There is still some debate around which

metrics matter and what they mean, the utility

of metrics is limited to quantifying one of the

following goals: Schedule of a software

project, Size/complexity of development

involved, cost of project, and quality of

software. Almost every metric has one thing in

common – the motivation behind it; this could

be assessing cost and effort to be put in or

assessing the quality of the software. For

example, one of the earliest metrics to measure

code efficiency – the Lines of Code (LOC)

metric has been used in a model as simple as:

 Effort = f (LOC)

There have been various other attempts to

use, for example, LOC (and other naive

metrics) as a metric to measure aspects such as

effort, complexity, etc. It is pretty obvious that

with the advent of newer programming

languages these models were not going to work

because it does not make sense, for instance, to

compare LOC values of an assembly language

program with a high-level language program.

Thus researchers started working on coming up

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1179

with metrics that were independent of the

language used.

2.2 Evaluation of Software Structure

Metrics

Structured design methodologies provide a

disciplined and organized guide to the

construction of software systems. However,

while the methodology structures and

documents the points at which design decisions

are made, it does not provide a specific,

quantitative basis for making these decisions.

Typically, the designers' only guidelines are

qualitative, perhaps even vague, principles

such as "functionality," "data transparency," or

"clarity." This paper, like several recent

publications, defines and validates a set of

software metrics which are appropriate for

evaluating the structure of large-scale systems.

These metrics are based on the measurement of

information flow between system components.

Specific metrics are defined for procedure

complexity, module complexity, and module

coupling. The validation, using the source code

for the UNIX operating system, shows that the

complexity measures are strongly correlated

with the occurrence of changes. Further, the

metrics for procedures and modules can be

interpreted to reveal various types of structural

flaws in the design and implementation.

2.3 Need for Software Metrics

Having looked at some basics of software

metrics, the next question that arises in many a

budding software engineering‟s mind is why do

we need metrics? And if they are indeed useful

to their cause? The answer to the latter question

in short is yes. Software metrics have been

proven to be useful if applied in the right way –

this needs to be stressed. Application of wrong

methods might lead to failure of a metric but it

is not really the metric which is to be blamed!

Here we state some arguments as to why we

need software metrics:

• Without measuring software process or

the quality of an end product, only subjective

evaluation is possible.

• Not desirable.

• With robust measurements.

• Requirements can be assessed better.

• Error prone components can be

identified at early stages.

• Quality assurance can be improved.

• Predicting resource requirement is

another important use of software metrics.

The issue of integration problem is

discussed by Sedigh-Ali et al., where the

complexity of interfaces and their integration is

interpreted as quality metrics. Cho et al define

a metrics for complexity, customizability and

reusability. They count the complexity of

metrics by using the combination of the

number of classes, interfaces, and relationship

among classes. They also combine the

calculation of cyclometric complexity with the

sum of classes and interfaces.

Our work in this area indicates that the

suite of metrics that we have defined could be

of substantial use in estimating the

effectiveness of the overall integration process,

during the specification and design stages. As a

consequence, a software developer does not

have to wait until the programming stage to get

any estimation. We intend to consolidate our

work and validate the metrics suite through

actual experimentation and analysis of the

results. The suite will also integrate existing

metrics available in the literature.

3. Classification of Software Metrics

There are three types of software metrics:

process metrics, project metrics and product

metrics.

1) Process Metrics:

Process metrics highlights the process of

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1180

software development. It mainly aims at

process duration, cost incurred and type of

methodology used. Process metrics can be

used to augment software development and

maintenance. Examples include the efficacy

of defect removal during development, the

patterning of testing defect arrival, and the

response time of the fix process.

2) Project Metrics:

Project metrics are used to monitor

project situation and status. Project metrics

preclude the problems or potential risks by

calibrating the project and help to optimize

the software development plan. Project

metrics describe the project characteristics

and execution. Examples include the

number of software developers, the

staffing pattern over the life cycle of the

software, cost, schedule, and productivity.

3) Product Metrics:

Product metrics describe the attributes of

the software product at any phase of its

development. Product metrics may measure

the size of the program, complexity of the

software design, performance, portability,

maintainability, and product scale. Product

metrics are used to presume and invent the

quality of the product. Product metrics are

used to measure the medium or the final

product. We can find more efficient ways of

improving software project, product and

process management.

3.1 Mathematical Analysis

A metric has a very explicit meaning in

mathematical analysis .It is a rule used to

determine distance between two points. More

formally, a metric is a function„ d ‟ defined on

pairs of objects p and q such that d (p, q)

expresses the distance between p and q. Such

metrics must satisfy certain properties:

d (p,p) = 0 for all p : that is, the distance

from point p to itself is zero;

d (p, q) = m (q, p) for all p and q: that is,

the distance from p to q is similar to the

distance from q to p;

d (p, r) ≤ d (p, q)+d (q, r) for all p, q and r:

that is, the distance from p to r is no larger

than the distance measured by stopping

through an intermediate point.

A prediction system comprise of a

mathematical model along with a set of

prediction processes for determining

unknown parameters and depicting the

results. The model should not be complicated

for use. Suppose we want to predict the

number of pages, P that will print out as a

source code program, so that we can bring

sufficient paper or calculate the time the

program will take for printing. We can use a

simple model,

P = x/a (1)

Where x is a variable, acts as a measure

i.e. length of source

Code program in LOC (line of code), and „a‟

is a constant that represents the average

number of lines per page. There are number

of models to determine effort estimation;

from analogy based estimation to parametric

models. A generic model can be used to

estimate effort predication.

E = aS
b

(2)

Where a and b are constants. E is effort in

person-months.

S is the size of source code in Line of

code.

3.2 Importance of Software Quality

In recent times the importance of software

quality has come to light when random errors

on a say a telephone bill, or on a bank

statement were randomly attributed to a bug in

the “computer code” or using the ignorant

adage of “the computer does things” without

making an effort to undermine the cause of the

problem or even separating it by hardware or

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1181

software. The problem arises when “computer

errors” creep into highly critical aspects of our

lives involving situations where a small error

can lead to a cataclysmic chain of events.

Bearing all this in mind, the importance of

enforcing software quality in computer

practices has become highly important. Seeing

the penetration of computer code into everyday

objects like washing machines, automobiles,

refrigerators, toys and even things like the mars

rover, any system be it a large one or a small

system running embedded IC technology,

ensuring the highest levels of software quality

is paramount.

Software quality, as stated earlier,

depends on a number of factors. Also as

theorized by David & Garwin, quality is a

complex as well as multifaceted concept,

which can be viewed according to different

points of view as follows

1) User View:

The user viewpoint of software quality

tends to be a lot more concrete and can be

highly subjective depending upon the User.

This view evaluates the software product

against the user‟s needs. In certain types of

software products like reliability performance

modeling and operational products, the user is

monitored according to how they use the

product.

2) Manufacturing View:

This viewpoint looks at the production

aspect of the software product. It basically

stresses on enforcing building the product

without any defects and getting it right the

first time rather than subsequently making a

defective product and spending valuable

project time and more importantly costs

ironing out the defects or bugs at a later stage.

Being process based, this viewpoint focuses

on conformity to the process, which will

eventually lead to a better product.

3) Product View:

The product viewpoint looks at the

internal features as well as the characteristics

of the product. The idea behind this

Viewpoint is that in case a product is sound in

terms of the features and functionality it

offers, and then it will also be favorable when

viewed from a user viewpoint in terms of

software quality. The idea is that controlling

the internal product quality indicators will

influence positively the external product

behavior (user quality) There are models

trying to link both the views of software

quality but more work is needed is this area.

4) Value based view:

The value-based view becomes important

when there are lots of contrasting views,

which are held by different Departments in an

organization. For example, the marketing

department generally takes a user view and the

technical department will generally take a

product-based view. Though initially these

contrasting viewpoints help to develop

360-Degree product with the different

viewpoints complementing each other, the

later stages of the software product

development might have issues.

4. Validation of Software Metrics

With the plethora of metrics proposed it is

critical that these metrics are thoroughly

validated it the help of past experiences and

new test data. There are many views on how

this validation should be carried out. For

example, Ejiogu suggests that since metrics

touch both structured programming and

mathematical measure theory, the two need to

be combined when validating software metrics.

He goes on to expand on this point in the

paper. This usually metrics are validated using

simple regression or linear rank correlation

techniques. These have proved to be effective

in a lot of simple cases.

But as the complexity of software grows

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1182

and also as more and more metrics are

proposed, these simple techniques have been

looked at, with more skepticism. This has led

to more research in this area of validating

software metrics, some of which we will

discuss in this paper. The reason why

regression based models may fail in validation

of software metrics can be explained by Fenton

all‟s analogy. They argue that regression

models lead to misleading results and cite a

road accident analogy – just claiming that

winter is the best time to drive is flawed if the

decision is just based on lower number of

accidents; the fact that lesser number of people

actually drive in winter conditions is very

crucial.

5. Comparison of Software

Metrics-Strengths and Weaknesses

The software industry does not have

standard metric and measurement practices.

Most of the software metric has multiple

definitions and ambiguous rules for counting.

There are also important subject issues that do

not have specific metrics, such as quantifying

the volume or quality levels of databases, web

sites and data warehouses. There is a lack of

strong empirical data on software costs,

schedules, effort, quality, and other tangible

elements, which results in metric problems.

5.1 Source Code Metrics

“Source lines of code” or SLOC was the

first metric developed for quantifying the

outcome of a software project. The divergent

“lines of code” or LOC has similar meaning

and is also widely acceptable. “Lines of code”

could be defined either:

• A physical line of code.

• A logical line of code.

Physical lines of code are sets of coded

instructions terminated by hitting the enter

key of a keyboard. Physical lines of code and

logical lines of code are almost identical for

some languages, but for some languages there

can be considerable differences. Generally,

the difference between physical lines of code

and logical lines of code is often excluded

from the software metrics literature.

Strengths of physical lines of code (LOC) are:

• It is easy to measure.

• There is a scope for automation of

counting.

• It is used in a verity of software project

estimation tools.

Weaknesses of physical LOC are:

It may include significant “dead code.” It may

include white spaces and comments. This

metric is vague for software reuse.

6. Conclusions

With the rapid advancement in software

industries, software metrics have also

developed fast. Software metrics become the

basis of the software management and crucial

to the accomplishment of software

development. It can be anticipated that by

using software metrics the overall rate of

progress in software productivity and

software quality will improve. If relative

changes in productivity and quality can be

determined and studied over time, then focus

can be put upon an organization‟s strengths

and weaknesses. Although people appreciate

the significance of software metrics, the

metrics field still needs to mature. Each of the

key software metrics candidates has broken

into many competing alternatives, often

following national restrictions. There is no

adequate international standard for any of the

extensively used software metrics. Absence of

firm theoretic background and t h e assurance

of methods, software metrics are still young

in comparison of other software theories.

 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1183

7. References

[1] Roger S. Pressman, Software Engineering:

A Practitioner‟s Approach, McGraw-Hill, 1996

[2] “Software Quality Metrics for Object

Oriented System Environments”, June 1995,

National Aeronautics and Space

Administration, Goddard Space Flight Center,

Greenbelt Maryland

[3] Dindin Wahyudin, Alexander Schatten,

Dietmar Winkler, A Min Tjoa, Stefan

Biff,“Defect Prediction using Combined

Product and Project Metrics “, March

2008.

[4] J.E. Gaffney, Metrics in software quality

assurance, Proceedings of the ACM CSC-ER

‟81 conference, pp 126-130, 1981

