

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1919

Mapping Bug Reports To Relevant Files:A Ranking Model, A Fine-

Grained Benchmark,And Feature Evaluation

1K ARPITHA,2S RAJESH

1&2 ASST.PROFESSOR, TALLA PADMAVATHI COLLEGE OF ENGINEERING

,TEKULAGUDEM, SOMIDI, KAZIPET-506003

 ABSTRACT:

When a new bug report is received, developers usually need to reproduce the bug and perform

code reviews to find the cause, a process that can be tedious and time consuming. A tool for

ranking all the source files with respect to how likely they are tocontain the cause of the bug

would enable developers to narrow down their search and improve productivity. This paper

introduces an adaptive ranking approach that leverages project knowledge through functional

decomposition of source code, API descriptions oflibrary components, the bug-fixing history, the

code change history, and the file dependency graph. Given a bug report, the rankingscore of each

source file is computed as a weighted combination of an array of features, where the weights are

trained automatically onpreviously solved bug reports using a learning-to-rank technique. We

evaluate the ranking system on six large scale open source Javaprojects, using the before-fix

version of the project for every bug report. The experimental results show that the learning-to-

rankapproach outperforms three recent state-of-the-art methods. In particular, our method makes

correct recommendations within the top10 ranked source files for over 70 percent of the bug

reports in the Eclipse Platform and Tomcat projects.

INTRODUCTION:

Word illustration makes an attempt to represent aspects of word meanings. as an example, the

illustration of “cellphone” might capture the facts that cellphones are electronic product, that

they embrace battery and screen, that they will be accustomed chat with others, and so on. Word

illustration may be a important part of the many tongue process systems as word is typically the

fundamental process unit of texts. A uncomplicated approach is to represent every word as aone-

hot vector, whose length is vocabulary size and only {1} dimension is 1, with all others being

zero. However, one hot word illustration solely encodes the indices of words in an exceedingly

vocabulary, however fails to capture made relative structure of the lexicon. to unravel this

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1920

drawback, several studies represent every word as a continual, low-dimensional and real valued

vector, conjointly referred to as word embeddings. Existing embedding learning approaches ar

totally on the premise of spatial arrangement hypothesis [9], that states that the representations of

words ar mirrored by their contexts. As a result, words with similar grammatical usages and

linguistics meanings, like “hotel” and “motel”, ar mapped into neighboring vectors within the

embedding area. Since word embeddings capture linguistics similarities between words, they

need been leveraged as inputs or additional word options for a range of tongue process tasks, as

well as MT , grammar parsing , question respondent, discourse parsing , etc al. Despite the

success of the context-based word embeddings in several natural language processing tasks [14],

we have a tendency to argue that they're not effective enough if directly applied to sentiment

analysis that is that the analysis space targeting at extracting, analyzing and organizing the

sentiment/opinion (e.g. thumbs up or thumbs down) of texts. the foremost major problem of

context-based embedding learning algorithms is that they solely model the contexts of words

however ignore the sentiment data of text. As a result, words with opposite polarity, like smart

and unhealthy, ar mapped into shut vectors within the embedding area. this can be important for

a few tasks like pos-tagging [18] as a result of the 2 words have similar usages and grammatical

roles. However, it becomes a disaster for sentiment analysis as they need opposite sentiment

polarity labels.

RELATED WORK

1. Title: Feature identification: A novel approach and a case study Author: G. Antoniol and Y.-

G. Gueheneuc, Feature identification may be a well-known technique to spot subsets of a

program ASCII text file activated once workout a practicality. many approaches are projected to

spot options. we have a tendency to gift associate degree approach to feature identification and

comparison for giant object-oriented multi-threaded programs victimisation each static and hot

vector, whose length is vocabulary size and only {1} dimension is 1, with all others being zero.

However, one hot word illustration solely encodes the indices of words in an exceedingly

vocabulary, however fails to capture made relative structure of the lexicon. to unravel this

drawback, several studies represent every word as a continual, low-dimensional and real valued

vector, conjointly referred to as word embeddings. Existing embedding learning approaches ar

totally on the premise of spatial arrangement hypothesis [9], that states that the representations of

words ar mirrored by their contexts. As a result, words with similar grammatical usages and

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1921

linguistics meanings, like “hotel” and “motel”, ar mapped into neighboring vectors within the

embedding area. Since word embeddings capture linguistics similarities between words, they

need been leveraged as inputs or additional word options for a range of tongue process tasks, as

well as MT , grammar parsing , question respondent, discourse parsing , etc al. Despite the

success of the context-based word embeddings in several natural language processing tasks [14],

we have a tendency to argue that they're not effective enough if directly applied to sentiment

analysis that is that the analysis space targeting at extracting, analyzing and organizing the

sentiment/opinion (e.g. thumbs up or thumbs down) of texts. the foremost major problem of

context-based embedding learning algorithms is that they solely model the contexts of words

however ignore the sentiment data of text. As a result, words with opposite polarity, like smart

and unhealthy, ar mapped into shut vectors within the embedding area. this can be important for

a few tasks like pos-tagging [18] as a result of the 2 words have similar usages and grammatical

roles. However, it becomes a disaster for sentiment analysis as they need opposite sentiment

polarity labels.

RELATED WORK

1. Title: Feature identification: A novel approach and a case study Author: G. Antoniol and Y.-

G. Gueheneuc, Feature identification may be a well-known technique to spot subsets of a

program ASCII text file activated once workout a practicality. many approaches are projected to

spot options. we have a tendency to gift associate degree approach to feature identification and

comparison for giant object-oriented multi-threaded programs victimisation each static and 3.

Title: Debugadvisor: A recommender system for debugging, Author: B. Ashok, J. Joy, H. Liang,

S. K. Rajamani, G. Srinivasa, and V. Vangala, In giant software package development comes,

once a computer user is assigned a bug to repair, she usually spends lots of your time looking (in

associate ad-hoc manner) for instances from the past wherever similar bugs are debugged,

analyzed and resolved. Systematic search tools that enable the computer user to specific the

context of the present bug, and search through various information repositories related to giant

comes will greatly improve the productivity of debugging This paper presents the planning,

implementation and knowledge from such a quest tool known as DebugAdvisor.

4. Expectations, outcomes, and challenges of modern code review Author: A. Bacchelli and C.

Bird, Code review could be a common software system engineering apply used each in open

supply and industrial contexts. Review these days is a smaller amount formal and additional

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1922

“lightweight” than the code inspections performed and studied within the 70s and 80s. we have a

tendency to through empirical observation explore the motivations, challenges, and outcomes of

tool-based code reviews. we have a tendency to determined, interviewed, and surveyed

developers and managers and manually classified many review comments across numerous

groups at Microsoft. Our study reveals that whereas finding defects remains the most motivation

for review, reviews ar less regarding defects than expected and instead give extra edges like

information transfer, inflated team awareness, and creation of other solutions to issues.

5. Title: Leveraging usage similarity for effective retrieval of examples in code repositories,

Author: S. K. Bajracharya, J. Ossher, and C. V. Lopes, Developers usually learn to use arthropod

genus (Application Programming Interfaces) by observing existing samples of API usage. Code

repositories contain several instances of such usage of arthropod genus. However, typical info

retrieval techniques fail to perform well in retrieving API usage examples from code repositories.

This paper presents Structural linguistics compartmentalisation (SSI), a way to associate words

to ASCII text file entities supported similarities of API usage. The heuristic behind this method

is that entities (classes, methods, etc.) that show similar uses of arthropod genus ar semantically

connected as a result of they are doing similar things. we have a tendency to appraise the

effectiveness of SSI in code retrieval by scrutiny 3 SSI primarily based retrieval schemes with 2

typical baseline schemes. we have a tendency to appraise the performance of the retrieval

schemes by running a group of twenty candidate queries against a repository containing 222,397

ASCII text file entities from 346 jars happiness to the Eclipse framework. The results of the

analysis show that SSI is effective in up the retrieval of examples in code repositories.

EXISTING SYSTEM:

given bug reportsautomatically.

tically parse the source code into fourdocument fields: class, method,

variable, and comment.The summary and the description of a bug report are consideredas two

query fields.

-phase and a two-phaseprediction model to recommend files to

fix. In the one-phasemodel, they create features from textual information andmetadata (e.g.,

version, platform, priority, etc.) of bugreports, apply Na€ıve Bayes to train the model using

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1923

previouslyfixed files as classification labels, and then use thetrained model to assign multiple

source files to a bug report.

and a fragment of a source file.

DISADVANTAGES OF EXISTING SYSTEM:

-phase model usesonly previously fixed files as labels in the training process,and

therefore cannot be used to recommend files that havenot been fixed before when being

presented with a new bugreport.

ns.

PROPOSED SYSTEM:

The main contributions of this paper include: a rankingapproach to the problem of mapping

source files to bugreports that enables the seamless integration of a wide diversityof features;

exploiting previously fixed bug reports astraining examples for the proposed rankingmodel in

conjunctionwith a learning-to-rank technique; using the file dependencygraph to define features

that capture a measure of codecomplexity; fine-grained benchmark datasets created bychecking

out a before-fix version of the source code packagefor each bug report; extensive evaluation and

comparisonswith existing state-of-the-art methods; and a thorough evaluationof the impact that

features have on the ranking accuracy.

ADVANTAGES OF PROPOSED SYSTEM:

ch can locate the relevant files within the top 10 recommendations for over 70

percent of the bug reports in Eclipse Platform and Tomcat.

-of-the-art approaches.

 experiments employing greedy backward feature elimination demonstrate

that all features are useful.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1924

ADVANTAGES:

1. we tend to introduced a learning-to-rank approach that emulates the bug finding method

utilized by developers.

2. Assign correct errors or bug to applicable user.

3. It scale back longer for assignment associated finding errors in an applicable Program.

4. The ranking performance will take pleasure in informative bug reports and well documented

code resulting in a much better lexical similarity and from ASCII text file files that have already

got a bug-fixing history.

5. It apply the feature choice and instance choice technique to method on bug report.

CONCLUSION To find a bug, developers use not solely the content of the bug report however

additionally domain data relevant to the package project. we have a tendency to introduced a

learning-to-rank approach that emulates the bug finding method used by developers. The ranking

model characterizes helpful relationships between a bug report and ASCII text file files by

investing domain data, like API specifications, the syntactical structure of code, or issue chase

knowledge. Experimental evaluations on six Java comes show that our approach will find the

relevant files at intervals the highest ten recommendations for over seventy % of the bug reports

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1925

in Eclipse Platform and Felis catus. what is more, the projected ranking model outperforms 3

recent progressive approaches. Feature analysis experiments using greedy backward feature

elimination demonstrate that every one options ar helpful. once plus runtime analysis, the feature

analysis results is used to pick out a set of options so as to attain a target trade-off between

system accuracy and runtime complexness. The projected adaptational ranking approach is

mostly applicable to package comes that there exists a sufficient quantity of project specific data,

like a comprehensive API documentation (Section three.1.2) associated an initial range of

antecedently mounted bug reports (Section half-dozen.1). what is more, the ranking performance

will get pleasure from informative bug reports and well documented code resulting in a higher

REFERENCES

[1] G. Antoniol and Y.-G. Gueheneuc, “Feature identification: A novel approach and a case

study,” in Proc. 21st IEEE Int. Conf. Softw. Maintenance,Washington, DC, USA, 2005, pp. 357–

366.

[2] G. Antoniol and Y.-G. Gueheneuc, “Feature identification: An epidemiological metaphor,”

IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627–641, Sep. 2006.

[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala, “Debugadvisor: A

recommender system for debugging,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM

SIGSOFT Symp. Found. Softw. Eng., New York, NY, USA, 2009, pp. 373–382.

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code review,”

in Proc. Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2013, pp. 712–721.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

