

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1194
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1194

Distributed File System Components and
Characteristics

Kanika Arora1 , A.Yeshvini2

Dronacharya College of engineering ,Gurgaon, INDIA

kanikaarora286@gmail.com ; yeshvini.a.93@gmail.com

Abstract

There has been different DFS, for example,

apache DFS, Google DFS, Linux DFS, Coda

DFS, and so forth which has made it an

extraordinary zone of examination. By

circulating stockpiling and calculation

crosswise over numerous servers, the asset

can develop with interest while staying

sparing at each size.metadata administration

adjusts to perform an extensive variety of

universally useful and experimental process.

1. INTRODUCTION

 This archive portrays the usefulness and

facts identified with a circulated

framework. The motivation behind

dispersed framework is to permit clients

of physically circulated machines to

impart information and capacity assets by

utilizing a typical record framework . A

DFS is actualized as a piece of the

working arrangement of each of the

associated machines. The DFS is a record

framework, whose customers, servers

and capacity gadgets are scattered among

the machines of a Distributed System. A

DFS is an appropriated usage of

traditional time

 File System is a method for storing and

organizing computer files and the data

they contain to make it easy to find and

access them.

 Distributed File System is a network file

system where a single file system can be

distributed across several physical

computer nodes. Separate nodes have

direct access to only a part of the entire

file system, in contrast to shared disk file

systems where all nodes have uniform

direct access to the entire storage.

 The characteristics of File System are:

• most files are small—transfer files

rather than disk blocks?

• reading more common than writing

• most access is sequential

• most of the files have a short lifetime—

lots of applications generate temporary

files (such as a compiler)

• file sharing (involving writes) is

unusual—argues for client caching

• processes use few files

• files can be divided into classes—

handle ―system‖ files and ―user‖ files

differently.

 A DFS is a distributed implementation

of the classical timesharing model of a

file system, where multiple users share

files and storage resources. The UNIX

mailto:yeshvini.a.93@gmail.com

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1195
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1195

timesharing file system is usually

regarded as the model.

 The motivation behind DFS is to permit

clients of physically disseminated

machines to impart information and

capacity assets by utilizing a typical

document framework .A normal design

for a DFS is an accumulation of

workstations and centralized servers

joined by a LAN. A DFS is executed as a

major aspect of the working arrangement

of each of the joined machines. The

appropriated record frameworks territory

is a wide research range. The later

research manages the need of changes in

accessibility of the frameworks and the

mix/adjustment to the web situation.

 Tanenbaum defines a distributed system

as a ―collection of independent computers

that appear to the users of the system as a

single computer.‖ There are two essential

points in this definition. The first is the

use of the word independent. This means

that, architecturally, the machines are

capable of operating independently. The

other thing is that the software enables

this set of connected machines to appear

as a single computer to the users of the

system. This is known as the single

system image and is a main goal in

designing distributed systems that are

easy to maintain and operate.

2 STRUCTURE AND

IMPLEMENTATION OF DFS

To explain the structure of a DFS, we

need to define:

1.Service

2.Server, and

3. Client.

A service is a software entity running on

one or more machines and providing a

particular type of function to a prior

unknown clients. A server is the service

software running on a single machine. A

client is a process that can invoke a

service using a set of operations that form

its client interface. Sometimes, a lower

level interface is defined for the actual

cross-machine interaction. When the need

arises, We refer to this interface as the

inter-machine interface. Clients

implement interfaces suitable for higher

level applications or direct access by

humans.

Using the above terminology, we say a

file system provides file services to

clients. A client interface for a file service

is formed by a set of file operations. The

most primitive operations are:

 Create a file,

 Delete a file,

 Read from a file, and

 Write to a file.

Fi1method of storing and accessing files on a file

server

A strategy for putting away and getting to

records is focused around a customer/server

building design. In a dispersed record

framework, one or more focal servers store

documents that can be gotten to, with fitting

approval rights, by any number of remote

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1196
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1196

customers in the system. Much like a

working frameworks arranges records in

hierarchal document administration

framework, the appropriated frameworks

utilizes an uniform naming tradition and a

mapping plan to stay informed concerning

where documents are spotted. At the point

when the customer gadget recovers a record

from the server, the first document shows up

as a typical document on the customer

machine, and the client has the capacity

work with the document in the same courses

as an ordinary record on the customer

machine , and the client has the capacity

work the record in the same routes as though

it were put away mainly on the workstation.

2.1 MAPPING OF LOGICAL AND

PHYSICAL FOLDERS

 The problems which arises due to normal

file system such as file sharing and file

replication are solved by

 Distributed File System by Mapping of

Logical and Physical folders of the file.

File and File Systems

 File name -Mapping symbolic name to a

unique file id (ufid or file handle) which is

the function of directory service.

 File attributes -ownership, type,

size, timestamp, access authorization

information.

 Data Units - Flat / Hierarchical

Structure

 File Access - sequential, direct, indexed-

sequential

2.2 ARCHITECTURE OF DISTRIBUTED

SYSTEM

1. UNIX file system layer - does normal

open / read / etc. commands.

 2. Virtual file system (VFS) layer -

 Gives clean layer between user and

filesystem.

a) Acts as deflection point by

using global vnodes.

b) Understands the difference

between local and remote

names.

c) Keeps in memory

information about what

should be deflected (mounted

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1197
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1197

directories) and how to get to

these remote directories.

 3. System call interface layer -

 a) Presents sanitized

validated requests in a uniform

way to the VFS.

 b) Break the complete pathname

into components.

 c) For each component, do an

NFS lookup using the

component name + directory v

node.

 d)After a mount point is reached,

 each component piece will

cause

 a server access.

 e)Can't hand the whole operation

to server since the client may

have a second mount on a

subsidiary directory (a mount

on a mount).

 f) A directory name cache on the

 client speeds up lookups.

 3. DISTRIBUTED FILE

SYSTEM FEATURES:

 The Distributed File System (DFS)

provides several important features,

described in the following sections.

3 .1 TRANSPARENCY PROPERTIES.

Login Transparency: User can log in at

any host with uniform login procedure

and perceive a uniform view of the file

system.

Access Transparency: Client process on

a hosts has uniform mechanism to access

all files in system regardless of files are

on local/remote host.

Location Transparency: The names of

the files do not reveal their physical

location.

Concurrency Transparency: An update

to a file should not have effect on the

correct execution of other process that is

concurrently sharing a file

Replication Transparency: Files may

be replicated to provide redundancy for

availability and also topermit concurrent

access for efficiency.

3.2 FAULT TOLERANCE

Issue Tolerance is a plan that empowers a

framework to proceed with operation,

conceivably at a diminished level, rather

than falling flat totally, when some piece

of the framework comes up short.

Deficiency tolerance is a methodology by

which unwavering quality of a machine

framework can be expanded past what can

be accomplished by customary techniques.

While fittings underpinned deficiency

tolerance has been decently reported, the

fresher, programming upheld shortcoming

tolerance procedures have stayed scattered

all through the writing. Far reaching and

independent, this book arranges that

assortment of learning with a concentrate on

issue tolerance in disseminated frameworks.

(A solitary methodology case is dealt with as

an exceptional instance of appropriated

frameworks.)

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1198
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1198

3.3 SCALABILITY

Versatility is the capacity of a framework,

system, or procedure to handle a becoming

measure of work in a proficient way or its

capacity to be expanded to oblige that

development. Case in point, it can allude to

the capacity of a framework to build

complete throughput under an expanded

burden when assets (commonly equipment)

are included. An undifferentiated from

significance is inferred when the expression

is utilized as a part of a monetary

connection, where adaptability of an

organization intimates that the underlying

plan of action offers the potential for

financial development inside the

organization. In terms of any substantial

circulated framework, size is only one part

of scale that needs to be considered. Pretty

much as vital is the exertion needed to build

ability to handle more noteworthy measures

of burden, usually alluded to as the

versatility of the framework. Versatility can

allude to numerous diverse parameters of the

framework: the amount extra movement

would it be able to handle, how simple is it

to include more capacity limit, or even what

number of more transactions can be

transformed. A framework whose execution

enhances in the wake of including

equipment, relatively to the limit included, is

said to be an adaptable system.a steering

convention is viewed as versatile regarding

system size, if the span of the vital directing

table on every hub becomes as O(log N),

where N is the quantity of hubs in the

system.

3.4 SECURITY

Circulated Systems Security gives a

comprehensive knowledge into current

security issues, methods, and

arrangements, and maps out future

headings in the setting of today's

appropriated frameworks. The fast

advancement and expanding

unpredictability of machine frameworks

and correspondence systems coupled with

the multiplication of administrations and

applications in both Internet-based and

specially appointed based situations have

brought system and framework security

issues to the fore.

This knowledge is clarified by displaying

of cutting edge circulated frameworks

utilizing a four-level coherent model –

host layer, base layer, application layer,

and administration layer (base to top).

The creators give a top to bottom scope

of security dangers and issues over these

levels. Also the creators depict the

methodologies needed for effective

security designing, close by investigating

how existing arrangements can be

leveraged or upgraded to proactively help

security for the cutting edge disseminated

frameworks. The useful issues thereof are

strengthened through handy detailed

analyses.

Circulated Systems Security:

• presents an outline of appropriated

frameworks security issues, including

dangers, patterns, principles and

arrangements.

• discusses dangers and vulnerabilities in

diverse layers specifically the host,

foundation, application,

•and administration layer to give a

comprehensive and handy, contemporary

perspective of big business architectures.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1199
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1199

4.semantics OF FILE SHARING

The three principle semantics of record

offering are as per the following:

•unix semantics – each operation on a

record is in a flash noticeable to all

methodologies.

•session semantics – no progressions are

noticeable to different procedures until

the document is shut.

•immutable records – documents can't be

changed (new forms must be made)

The examination of document imparting

semantics is that of seeing how records

act. Case in point, on most frameworks, if

a read takes after a compose, the read of

that area will give back where its due

simply composed. In the event that two

composes happen in progression, the

accompanying read will give back where

its due of the last compose. Document

frameworks that carry on along these

lines are said to watch successive

semantics.

Consecutive semantics can be attained in

a dispersed framework if there is one

server and customers don't reserve

information. This can result in execution

issues since customers will be heading off

to the server for each document

operation, (for example, single-byte

peruses). The execution issues can be

lightened with customer reserving.

Nonetheless, now if the customer adjusts

its store and an alternate customer

peruses information from the server, it

will get out of date information.

Consecutive semantics no more hold.

One arrangement is to make all the

composes compose through to the server.

This is wasteful and does not tackle the

issue of customers having invalid

duplicates in their store. To tackle this,

the server would need to inform all

customers holding duplicates of the

information.

An alternate arrangement is to unwind the

semantics. We will just tell the clients

that things don't work the same route on

the disseminated document framework as

they did on the nearby record framework.

The new run the show can be "changes to

an open record are at first unmistakable

just to the methodology (or machine) that

altered it." These are known as session

semantics.

That is, a document can't be open for

change, just for perusing or making. In

the event that we have to change a record,

we'll make a totally new document under

the old name. Permanent documents are a

support to replication yet they don't assist

with changes to the document's substance

(or, all the more absolutely, that the old

record is outdated in light of the fact that

another unified with adjusted substance

succeeded it). In any case we need to

fight with the issue that there may be an

alternate methodology perusing the old

record. It's conceivable to distinguish that

a record has changed and begin coming

up short demands from different

methodologies.

A last option is to utilize nuclear

transactions. To get to a record or a

gathering of documents, a methodology

to begin with executes a start transaction

primitive to flag that all future operations

will be executed unified. At the point

when the work is finished, an end

transaction primitive is executed. In the

event that two or more transactions begin

in the meantime, the framework

guarantees that the deciding result is as

though they were run in some

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1200
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1200

consecutive request. All progressions

have a w

5. CACHING

Lessen system activity by holding as of late

got to circle obstructs in a store, with the

goal that rehashed gets to the same data can

be taken care of mainly. In the disseminated

environment, distinctive exercises happen in

simultaneous manner. Normally, normal

assets like the underlying system,

Web/application servers, database servers,

and store servers are imparted by numerous

customers. Disseminating the registering

burden is the sign of conveyed frameworks.

Asset imparting and distribution is a real test

in planning appropriated construction

modeling. Case in point, consider a Web-

based database-driven business application.

The Web server and the database server are

pounded with customer demands. Reserving,

burden adjusting, bunching, pooling, and

time-offering systems enhance the

framework execution and accessibility. The

execution of a reserving framework relies on

upon the underlying storing information

structure, store removal system, and reserve

use arrangement. To guarantee sensible

execution of a record framework, some

manifestation of storing is required. In a

nearby document framework the basis for

storing is to diminish circle I/O. In a

disseminated document framework (DFS)

the reason is to decrease both system

movement and circle I/O. In a DFS the

customer stores can be placed either in the

essential memory or on a circle. The server

will dependably keep a store in essential

memory in the same route as in a nearby

document framework. The square size of the

reserve in a DFS can fluctuate from the span

of a circle piece to a whole record.

5.1 CACHE UPDATE POLICY

The policy used to write modified data

back to the server’smaster copy has a

critical effect on the system’sperformance

and reliability. Update policies:

• Write-through.

The simplest and most reliable strategy.

Write operations must wait until the data

is written to the

server. The effect is that the cache is only

used for read operations.

• Delayed write.

Modification are written to the cache and

then written to the server at a later time.

Write operations becomes quicker and if

data are overwritten before they are sent

to the server only the last update need to

be written to the server.

• Write-on-close.

All the time the file is open, the local

cache is used. Only when the file is

closed, data is written to the file server.

For files that are open for long time

periods and frequently modified, this

gives better performance than delayed

write. Used by the Andrew file system.

5.2 REMOTE SERVICES

When a client needs service from a server on

another machine, a message need to be

sent to the serverdemanding the service.

The server sends back a message with the

requested data. A common way to

achieve this isRemote Procedure

Call(RPC).The idea is that an RPC

should look like a normalsubroutine call

to the client.Another possibility is to use

sockets directly. Sockets used in the File

system code however, have a few

disadvantages:

1. Sockets may not be available in all

systems

2. Making a connection using sockets

requires knowledgeof socket names.

This is a type of system

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1201
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1201

configuration data that should not be

compiled into file system code.

COMPARISON BETWEEN CACHING

AND REMOTE SERVICE

 Many remote accesses can be handled by

a local cache. There's a great deal of

locality of reference in file accesses.

Servers can be accessed only

occasionally rather than for each access.

 Caching causes data to be moved in a few

big chunks rather than in many smaller

pieces; this leads to considerable

efficiency for the network.

 Disk accesses can be better optimized on

the server if it's understood that requests

are always for large contiguous chunks.

 Cache consistency is the major problem

with caching. When there are infrequent

writes, caching is a win. In environments

with many writes, the work required to

maintain consistency overwhelms

caching advantages.

 Caching works best on machines with

considerable local store - either local

disks or large memories. With neither of

these, use remote-service.

 Caching requires a whole separate

mechanism to support acquiring and

storage of large amounts of data. Remote

service merely does what's required for

each call. As such, caching introduces an

extra layer and mechanism and is more

complicated than remote service.

6. CONCLUSION

This exploration paper underlines the

necessity and different peculiarities of a

Distributed File System. The issue of

File System is unraveled by the Dfs.the

motivation behind DFS is to permit

clients of physically dispersed machines

to impart information and capacity assets

by utilizing a typical record framework .

The DFS do the mapping of physical and

coherent organizers. By which we can

store and offer records in a proficient

way. The gimmicks of DFS underlines its

focal points and proficiency that how this

framework beats the issues and

disadvantages of other document

frameworks. The transparency property

underlines different parameters, flaw

tolerance ,adaptability, security and so

forth portrays the solidity of the DFS

framework. The semantics of document

imparting experiences to three qualities

as Unix semantics, session semantics and

permanent records. The reserving is

paramount in DFS, which says that the

customer stores can be spotted either in

the essential memory or on a circle. The

server will dependably keep a store in

essential memory in the same route as in

a nearby document framework. The

square size of the reserve in a DFS can

shift from the extent of a plate piece to a

whole record. It is utilized for burden

adjusting, grouping, pooling, and time-

offering methods enhance the framework

execution and accessibility. At that point

the remote access clarifies how the

information is remotely gotten to and

utilized. The examination between

remote get to and storing figures out

which is more adaptable and why, we

obviously watch that reserving is much

better and effective then remote access

framework as reserving defeats all the

issue of remote administrations. Since the

reliance on appropriated document

frameworks builds, the accessibility turns

into a genuine concern. Case in point, the

AFS can reserve whole documents on

nearby plates, which permit read access

dodge server collaboration. Yet there is

compose reliance yet. In this way DFS is

touchy to disappointments of servers and

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1202
Distributed File System Components and Characteristics Kanika Arora , A.Yeshvini

P a g e | 1202

the system despite the fact that the

reliance is negligible.

REFERENCES

[1] Thanh, T.D.; Mohan, S.; Choi,

E.; SangBum Kim; Pilsung Kim.

2008Networked Computing and

Advanced Information Management.

“A Taxonomy and Survey on

Distributed File Systems”

[2] Randy chow,1997,Distributed

operating systems & Algorithms

[3] Eliezer Levy, Abraham

Silberschatz. December 1990

Computing Surveys (CSUR) ,

Volume 22 Issue 4. ”Distributed file

systems: concepts and examples”.

[4] Walter, B., Popek, G. English, R.,

Kline, C., Thiel, G. The Locus

Distributed Operating

System. Proceeding of the Ninth

ACM Symposium on Operating

Systems Principles, Breton Woods.

Oct 1983.

[5] Howard, J. H., Kazar, M. L.,

Menees, S. G., Nichols, D. A.,

Satyanarayanan, M.,Sidebotham, R.

N., West, M. J. Scale and

Performance in a Distributed File

System. ACM Transactions on

Computer Systems, Vol 6, N
o
 1, Feb

1988.

[6] Open Software Foundation,

Inc. File Systems in a Distributed

Computing Environment. White

Paper. 1991.

[7]R. Chow and T. Johnson,

Distributed Operating Systems &

Algorithms, 1997

Coda: A Resilient Distributed File

System, Satyanarayan, M., Kistler,

J.J, Siegel, E.H., IEEE

