

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1203
Merge Sort Algorithm Jaiveer Singh & Raju Singh

P a g e | 1203

Merge Sort Algorithm

Jaiveer Singh (16915) & Raju Singh(16930)

Department of Information and Technology Dronacharya College of Engineering

Gurgaon, India

Jaiveer.16915@ggnindia.dronacharya.info ; Raju.16930@ggnindia.dronacharya.info

ABSTRACT:

Given an array with n elements, we want to

rearrange them in ascending order. Sorting

algorithms such as the Bubble, Insertion

and Selection Sort all have a quadratic time

complexity that limits their use when the

number of elements is very big. In this

paper, we introduce Merge Sort, a divide-

and- conquer algorithm to sort an N element

array. We evaluate the O(NlogN) time

complexity of merge sort theoretically and

empirically. Our results show a large

improvement in efficiency over other

algorithms.

1. INTRODUCTION

Search engine is basically using sorting

algorithm. When you search some key word

online, the feedback information is brought

to you sorted by the importance of the web

page. Bubble, Selection and Insertion Sort,

they all have an O(N2) time complexity that

limits its usefulness to small number of

element no more than a few thousand data

points. The quadratic time complexity of

existing algorithms such as Bubble,

Selection and Insertion Sort limits their

performance when array size increases.

In this paper we introduce Merge Sort which

is able to rearrange elements of a list in

ascending order. Merge sort works as a

divide-and-conquer algorithm. It recursively

divide the list into two halves until one

element left, and merge the already sorted

two halves into a sorted one. Our main

contribution is the introduction of Merge

Sort, an efficient algorithm can sort a list of

array elements in O(NlogN) time. We

evaluate the O(NlogN) time complexity

theoretically and empirically. The next

section describes some existing sorting

algorithms: Bubble Sort, Insertion Sort and

Selection Sort. Section 3 provides a details

explanation of our Merge Sort algorithm.

Section 4 and 5 discusses empirical and

theoretical evaluation based on efficiency.

Section 6 summarizes our study and gives a

conclusion.

Note: Arrays we mentioned in this article

have the size of N.

2. RELATED WORK

Selection sort [1] works as follows: At each

iteration, we identify two regions, sorted

region (no element from start) and unsorted

region. We “select” one smallest element

from the unsorted region and put it in the

sorted region. The number of elements in

sorted region will increase by 1 each

iteration. Repeat this on the rest of the

unsorted region until it isexhausted. This

method is called selection sort because it

works by repeatedly “selecting” the smallest

remaining element.

We often use Insertion Sort [2] to sort

bridge hands: At each iteration, we identify

two regions, sorted region (one element

from start which is the smallest) and

unsorted region. We take one element from

the unsorted region and “insert” it in the

sorted region. The elements in sorted region

will increase by 1 each iteration. Repeat this

on the rest of the unsorted region without

mailto:Jaiveer.16915@ggnindia.dronacharya.info
mailto:Raju.16930@ggnindia.dronacharya.info

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1204
Merge Sort Algorithm Jaiveer Singh & Raju Singh

P a g e | 1204

the first element. Experiments by Astrachan

[4] sorting strings in Java show bubble sort

is roughly 5 times slower than insertion sort

and 40% slower than selection sort which

shows that Insertion is the fastest among the

three. We will evaluate insertion sort

compared with merge sort in empirical

evaluation.

Bubble sort works as follows: keep passing

through the list, exchanging adjacent

element, if the list is out of order; when no

exchanges are required on some pass, the

list is sorted.

In Bubble sort, Selection sort and Insertion

sort, the O(N2) time complexity limits the

performance when N gets very big. We will

introduce a “divide and conquer” algorithm

to lower the time complexity.

3. APPROACH

Merge sort uses a divide-and-conquer

approach:

1) Divide the array repeatedly into two

halves

2) Stop dividing when there is single

element left. By fact, single element is

already sorted.

3) Merges two already sorted sub arrays into

one. Pseudo Code:

a) Input: Array A[1…N], indices p, q, r (p ≤

 q <r). A[p…r] is the array to be divided

A[p] is the beginning element and A[r] is

the ending element Output: Array A[p…r]

in ascending order

In figure 1, Line 1 controls when to stop

dividing – when there is single element left.

Line 2-4 divides array A[p…r] into two

halves. Line 3’, by fact, 2, 1, 4, 3 are sorted

element, so we stop dividing. Line 5 merge

the sorted elements into an array. In figure

2, Line 6-7, N1, N2 calculate numbers of

elements of the 1st and 2nd halve. Line 8,

two blank arrays L and R are created in

order to store the 1st and 2nd halve. Line 9-

14 copy 1st halve to L and 2nd halve to R,

set L[N1+1], R[N2+1] to ∞. Line 15-16,

pointer i, j is pointing to the first elements of

L and R by default (See Figure 3,a);Figure

4,c)). Line 17, after k times comparison

(Figure 3, 2 times; Figure 4, 4 times), the

array is sorted in ascending order. Line 18-

22, compare the elements at which i and j is

“pointing”. Append the smaller one to array

A[p…r].(Figure 3,a) Figure 4 a)). After k

times comparison, we will have k elements

sorted. Finally, we will have array A[p…r]

sorted.(Figure 3,4)

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1205
Merge Sort Algorithm Jaiveer Singh & Raju Singh

P a g e | 1205

4. Theoretical Evaluation

 Comparison between two array elements is

the key operation of bubble sort and merge

sort. Because before we sort the array we

need to compare between array elements.

The worst case for merge sort occurs when

we merge two sub arrays into one if the

biggest and the second biggest elements are

in two separated sub array. Let N=8, we

have array {1,3,2,9,5,7,6,8,}. From figure

1.a, element 3(second biggest

element),9(biggest element) are in separated

sub array. # of comparisons is 3 when {1,3}

and {2,9} were merged into one array. It’s

the same case merge {5,7} and {6,8} into

one array.

From figure 1.b, 9,8 are in separated sub

array, we can see after 3 comparisons

element 1,2,3 are in the right place. Then

after 4 comparisons, element 5,6,7,8 are in

the right place. Then 9 is copied to the right

place. # of comparison is 7.

Let T(N)=# of comparison of merge sort n

array element. In the worst case, # of

comparison of last merge is

N-1. Before we merge two N/2 sub arrays

into one, we need to sort them. It took

2T(N/2). We have

The best case for merge sort occurs when

we merge two sub arrays into one. The last

element of one sub array is smaller than the

first element of the other array.

Let N=8, we have array {1,2,3,4,7,8,9,10}.

From figure 2.a, it takes 2 comparisons to

merge {1,2} and {3,4} into one. It is the

same case with merging {7,8} and {9,10}

into one.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1206
Merge Sort Algorithm Jaiveer Singh & Raju Singh

P a g e | 1206

From figure 2.b, we can see after 4

comparisons, element 1,2,3,4 are in the right

place. The last comparison occurs when i=4,

j=1. Then 7,8,9,10 are copied to the right

place directly. # of comparisons is only

4(half of the array size)

Let T(N)=# of comparison of merge sort n

array element. In the worst case, # of

comparison of last merge is N/2. We have

5.Empirical Evaluation

The efficiency of the merge sort algorithm

will be measured in CPU time which is

measured using the system clock on a

machine with minimal background

processes running, with respect to the size of

the input array, and compared to the

selection sort algorithm. The merge sort

algorithm will be run with the array size

parameter set to: 10k, 20k, 30k, 40k, 50k

and 60k over a range of varying-size arrays.

To ensure reproducibility, all datasets and

algorithms used in this evaluation can be

found at

“http://cs.fit.edu/~pkc/pub/classes/writing/ht

tpdJan24.log.zip”. The data sets used are

synthetic data sets of varying-length arrays

with random numbers. The tests were run on

PC running Windows XP and the following

specifications: Intel Core 2 Duo CPU E8400

at 3.00 GHz with 2 GB of RAM. Algorithms

are run in Java.

5.1 Procedures

The procedure is as follows: 1 Store 60,000

records in an array 2 Choose 10,000 records

3 Sort records using merge sort and

insertion sort algorithm 4 Record CPU time

5 Increment Array size by 10,000 each time

until reach 60,000, repeat 3-5

5.2 Results and Analysis

Figure 5 shows Merge Sort algorithm is

significantly faster than Insertion Sort

algorithm for great size of array. Merge sort

is 24 to 241 times faster than Insertion Sort

(using N values of 10,000 and 60,000

respectively).

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1207
Merge Sort Algorithm Jaiveer Singh & Raju Singh

P a g e | 1207

Table 1 shows Merge Sort is slightly faster

than Insertion Sort when array size N (3000

- 7000) is small. This is because Merge Sort

has too many recursive calls and temporary

array allocation.

By passing the paired t-test using data in

table 1, we found that difference between

merge and insertion sort is statistically

significant with 95% confident. (t=2.26,

d.f.=9, p<0.05)

6. Conclusions

 In this paper we introduced Merge Sort

algorithm, a O(NlongN) time and accurate

sorting algorithm. Merge sort uses a divide-

and-conquer method recursively sorts the

elements of a list while Bubble, Insertion

and Selection have a quadratic time

complexity that limit its use to small number

of elements. Merge sort uses divide-and-

conquer to speed up the sorting. Our

theoretical and empirical analysis showed

that Merge sort has a O(NlogN) time

complexity. Merge Sort’s efficiency was

compared with Insertion sort which is better

than Bubble and Selection Sort. Merge sort

is slightly faster than insertion sort when N

is small but is much faster as N grows.

One of the limitations is the algorithm must

copy the result placed into Result list back

into m list(m list return value of merge sort

function each call) on each call of merge .

An alternative to this copying is to associate

a new field of information with each

element in m. This field will be used to link

the keys and any associated information

together in a sorted list (a key and its related

information is called a record). Then the

merging of the sorted lists proceeds by

changing the link values; no records need to

be moved at all. A field which contains only

a link will generally be smaller than an

entire record so less space will also be used.

REFERENCES

[1] Sedgewick, Algorithms in C++, pp.96‐9

8, 102, ISBN 0‐201‐

51059‐6 ,Addison‐Wesley , 1992

[2] Sedgewick, Algorithms in C++, pp.98‐1

00, ISBN 0‐201‐51059‐

6 ,Addison‐Wesley , 1992

[3] Sedgewick, Algorithms in C++,

pp.100‐104, ISBN 0‐201‐

51059‐6 ,Addison‐Wesley , 1992

[4] Owen Astrachan, Bubble Sort: An

ArchaeologicalAlgorithmic Analysis,

SIGCSE 2003,

