

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2318

Design and Implemenation Single Error Correction Codes with

Bloom Filter

1
A MOUNIKA,

2
V SWATHANTHRA

1
Pg Scholar, Department of ECE,Vaageswari college of engineering, Karimnagar

2
Assoc.Prof, Department of ECE,Vaageswari college of engineering, Karimnagar

ABSTRACT

Bloom filters (BFs) provide a fast and

efficient way to check whether a given

element belongs to a set. BFs are widely

used in various applications like networking,

computer architectures and communications.

At present these bloom filters are also

extended to various scenarios. In advanced

electronic circuits, the reliability becomes a

challenge due to the increase in radiation,

manufacturing variations and reduction of

noise margins as technology improves.

Here, the BFs are used to detect and correct

errors in the associated data set. This gives a

reuse of existing BFs to also detect and

correct errors such that there is no need to

add extra error correction methods which

reduces the area of the proposed method.

I. INTRODUCTION

Bloom filter checks whether an element

belongs to a set in a simple and efficient

way [1]. It is a probabilistic data structure. It

is used in various computer architectures

and networking applications [2]. The BFs

are also used to reduce data lookups in the

large data bases for example in Google

Bigtable [3]. The extension of the BF basic

structures are implementing over years for

example counting BFs are implemented in

order to remove the elements in the BF [4].

Another extension in order to enhance the

transmission in network, compressed BFs

was proposed [5]. To achieve error

correction in large data sets, Bloom filter

(Biff) codes are proposed recently that are

based on Bloom filter [6]. Bloom filters are

mostly implemented using electronic circuits

[7], [8]. In order to get high performance,

Bloom filters contents are generally stored

in high speed memory and the processing is

implemented in a processor or in separate

circuitry. The element set which are used to

construct Bloom filter is generally stored in

low speed memory [9]. As technology

scales, the challenging thing for electronic

circuits is to maintain reliability. The most

common errors occurred due to radiation,

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2319

interferences and other effects. So, in order

to operate the circuits reliably at various

levels the mitigation methods are

implemented. The important element in

implementation of Bloom filters are

memories. By using spare rows and columns

methods, the permanent errors are generally

corrected for memories. But, soft errors

which are occurred due to radiation can

affect the memory cell by changing the

value during circuit operation. Soft errors

are one which doesn‟t damage the memory

device but produces a wrong value in the

memory cell i.e., by converting zeros to ones

or ones to zeros but operates correctly [10].

Generally in memories, the per word parity

bit of different higher error correction codes

(ECCs) are used to deal soft errors [11]. In

electronic circuits to reduce errors the

Bloom filters are proposed. For example, to

detect faulty words in nanomemory the

Bloom filters is used [12]. In [13], the CBF

is used to detect and correct errors in content

addressable memories (CAMs). Here, the

purpose is to find errors in CAM entries

where the CBF and CAM are used in

parallel. This can be obtained by studying

the results of CAM and CBF such that they

are uniform. If an error is found, the

correction method is started to get the

correct value in the modified CAM entry by

using the additional copy of its contents. The

BFs are included externally in both the cases

to detect and correct errors but it doesn‟t

exist in the actual design. In Biff codes, the

same method applies where the error

correction is done by using extended Bloom

filters. Therefore, in all the above cases the

bloom filters are added externally but

actually not present in the original design.

This is distinct to the reuse of existing BFs

which already exists in system for error

correction

II LITERATURE SURVEY.

Kazuteru Namba et al., (1) proposed a BCH

decoder that corrects double-adjacent and

single-bit errors in parallel which resembled

a Wilkerson’s parallel BCH decoder which

is used to correct only single-bit errors. The

decoder section is operated serially for a

double and double adjacent error where in

the memory system the probability of

occurrence of single and multi-bit error

occurs in the memory system. Amit Kumar

et al., (2) presented a design of a (15,k) BCH

encoder on FPGA with multi bit error

correction control, in which the primitive

polynomial is implemented in the Linear

Shift Register logic .By the use of the cyclic

codes, the reminder parameter b(x) is

calculated in a LFSR (15,k) with feedback

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2320

connections which corresponds to the

coefficient of the polynomial generated. In

this technique three encoders are designed to

encode the single, double and triple error

correcting BCH codes

III. Implementation

The proposed method represents that CBF in

addition to structure that performs fast

membership check to element set, also

provide a redundant representation of the

element set. Hence, this redundancy can be

used for error detection and correction. To

analyze this method, general

implementations of CBFs where the slow

memory is stored with elements of set and

faster memory is used to store the CBF.

Generally, it is considered that elements of

set are stored in DRAM and CBF is stored

in cache [9]. The reason behind this is that

elements of set are accessed only when

elements are read, added or removed hence

access time is not an issue but CBF needs to

be accessed frequently hence it requires fast

access time to increase its performance.

Since entire element set is stored in slow

memory, no incorrect deletion will be

present as it would be found when the

element is getting removed from slow

memory. Hence, false negative in CBF is

not an issue in our method. Generally,

memories are protected with per word parity

bit or with single bit error correction code

[11]. This is considered based on

observation that most errors affect single bit

or even if they affect various bits, the errors

can be divided among various words by use

of interleaving [16]. The time between the

soft errors is mostly large because they are

rare events [10]. Generally these errors are

considered as isolated due to arrival rate of

terrestrial applications is of at least days or

weeks. Hence, if the soft error arrives by a

time any previous error can be detected or

corrected. This is the consideration needed

when single bit error correction codes are

used. In this method, it is considered that

both DRAM and cache are protected with

per word parity bit which can detect single

errors. Hence, by using single bit error

correction codes it is considered that error

are isolated. The objective for this method

implementation is to correct single bit errors

using CBF. Hence, without having the cost

of adding an ECC to memories, the CBF

will give single bit error correction. The

initial step to perform error correction is to

detect errors. It is performed by checking

parity bit while accessing either DRAM or

caches. To have earlier detection of errors,

the use of scrubbing to periodically read

memories is considered [15]. If the error

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2321

gets detected, then the correction procedure

is implemented. Hence, the error can occur

either in CBF itself or the element set which

is stored in memory. If error occurs in CBF,

then it is corrected by clearing entire CBF

and reconstructed it using element set. If

error occurs in element set, then the

procedure is complex and it is divided in

two phases that are represented in the

following methods. First the fast and simple

procedure is used and if it is unable to

correct error then and advanced and

complex procedure for error correction is

used.

IV CONCLUSION

In this brief, a new application of BFs is

proposed. The idea is to use BFs in existing

applications to also detect and correct errors

in their associated element set. In particular,

it shows that CBFs can be used to correct

errors in associated element set. This gives a

cost efficient solution to reduce soft errors in

applications which use CBFs. The

configuration considered here is that the

memory protected with per word parity bit

for which the CBF is used to get single bit

error correction. This show how existing

CBFs can be used to get error correction in

addition to perform the membership

checking function. The general idea can also

be used when memory is protected with

more advanced codes. For example, if a

SEC-DED code is used, the CBF is used to

correct double errors. In addition, the

simplest part of error correction method can

be applied to BFs to get some degree of

error detection and correction.

References

 [1] B. Bloom, “Space/time tradeoffs in hash

coding with allowable errors, ”Commun.

ACM, vol. 13, no. 7, pp. 422–426, 1970. .

[2] A. Broder and M. Mitzenmacher,

“Network applications of bloom filters: A

survey,” in Proc. 40th Annu. Allerton Conf.,

Oct. 2002, pp. 636–646.

 [3] C. Fay et al., “Bigtable: A distributed

storage system for structured data,” ACM

TOCS, vol. 26, no. 2, pp. 1–4, 2008.

[4] F. Bonomi, M. Mitzenmacher, R.

Panigrahy, S. Singh, and G. Varghese, “An

improved construction for counting bloom

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2322

filters,” in Proc. 14th Annu. ESA, 2006, pp.

1–12.

[5] M. Mitzenmacher, “Compressed bloom

filters,” in Proc. 12th Annu. ACM Symp.

PODC, 2001, pp. 144– 150.

[6] M. Mitzenmacher and G. Varghese,

“Biff (Bloom Filter) codes: Fast error

correction for large data sets,” in Proc. IEEE

ISIT, Jun. 2012, pp. 1–32.

[7] S. Elham, A. Moshovos, and A. Veneris,

“L-CBF: A low-power, fast counting Bloom

filter architecture,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 6, pp.

628–638, Jun. 2008.

[8] T. Kocak and I. Kaya, “Low-power

bloom filter architecture for deep packet

inspection,” IEEE Commun. Lett., vol. 10,

no. 3, pp. 210–212, Mar. 2006.

[9] S. Dharmapurikar, H. Song, J. Turner,

and J. W. Lockwood, “Fast hash table

lookup using extended bloom filter: An aid

to network processing,” in Proc.

ACM/SIGCOMM, 2005, pp. 181–192.

[10] M. Nicolaidis, “Design for soft error

mitigation,” IEEE Trans. Device Mater.

Rel., vol. 5, no. 3, pp. 405–418, Sep. 2005.

 [11] C. L. Chen and M. Y. Hsiao, “Error-

correcting codes for semiconductor memory

applications: A state-of-the-art review,”

IBM J. Res. Develop., vol. 28, no. 2, pp.

124–134, 1984. [12] G. Wang, W. Gong,

and R. Kastner, “On the use of bloom filters

for defect maps in nanocomputing,” in Proc.

IEEE/ACM ICCAD, Nov. 2006, pp. 743–

746.

 [13] S. Pontarelli and M. Ottavi, “Error

detection and correction in content

addressable memories by using bloom

filters,” IEEE Trans. Comput.,vol. 62, no. 6,

pp. 1111–1126, Jun. 2013.

 [14] A. Reddy and P. Banarjee, “Algorithm-

based fault detection for signal processing

applications,” IEEE Trans. Comput., vol. 39,

no. 10, pp. 1304– 1308, Oct. 1990.

[15] A. M. Saleh, J. J. Serrano, and J. H.

Patel, “Reliability of scrubbing recovery-

techniques for memory systems,” IEEE

Trans. Rel., vol. 39, no. 1, pp. 114–122, Apr.

1990.

[16] P. Reviriego, J. A. Maestro, S. Baeg, S.

J. Wen, and R. Wong, “Protection of

memories suffering MCUs through the

selection of the optimal interleaving

distance,” IEEE Trans. Nucl. Sci., vol. 57,

no. 4,pp. 2124–2128, Aug. 2010.

[17] Pedro Reviriego, Salvatore Pontarelli,

“A synergetic use of bloom filters for error

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2323

detection and correction”, IEEE

Transactions on VLSI systems, VOL. 23,

NO. 3, March 2015.

AUTHOR’S PROFILE:

A MOUNIKA, Pg Scholar,

Department of ECE,Vaageswari college of

engineering, Karimnagar

V SWATHANTHRA,

Assoc.Prof, Department of ECE,Vaageswari

college of engineering, Karimnagar

