

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

 P a g e 1275

A study on Binary Tree

Ankit Dalal1* and Ankur Atri21

Department of Information Technology, Computer Science and Information Technology,
Dronacharya College of Engineering,Gurgaon-122001, India

*E-mail: ankit.16898@ggnindia.dronacharya.info, ankur.16900@ggnindia.dronacharya.info

Abstract:

This research paper is a general
overview of dynamic data structure
called Tree which provides flexibility in
adding new data elements and deleting
existing data elements onto the
structure.In computer science, a binary
tree is a tree data structure in which
each node has at most two children,
which are referred to as the left child
and the right child.Binary trees are a
good way to express arithmetic

expressions. In this paper we have
studied about binary tree. This paper
covers discussion about properties of
binary tree, types of binary trees,
traversal techniques, searching, and
insertion and deletion operation.

Keywords:

Node, root, child, sub-tree and siblings

etc.

Introduction

A Tree is a dynamic, non-linear data

structure which is an acyclic graph or graph

having no cycles. This structure is mainly

used to represent data containing a

hierarchical relationship between elements.

Binary trees are hierarchical data structures

which allow insertion and a fast, nearest-

neighbours search in one-dimensional data.

It can be used instead of qsort and binary

search to quickly find the closest points in a

data array. The binary tree has the

advantage of having a simple structure that

allows generalization for more then one

dimension - the so-called KD Tree[1].

Therefore, it is good to understand how it

works and how it performs data searches.In

this data is stored in non-consecutive

memory location or inconsequential form.

There is no unique predecessor or unique

successor. A tree data structure is depicted

upside down with the root at the top and

the leaves at the bottom[2,3].

Figure 1

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

P a g e 1276

Basic Terminology

Root
A root is a specially designated node in a
tree which has no parent. There can be only
one root in a tree. In Fig 2. A is the root
node.

Node

This is the main components of any tree
structure. It stores the actual data along
with links to other nodes. In Fig 2. A, B and
C are nodes because these are holding data
elements.

Parent
A node having left child or right child or
both is termed as parent node. In Fig
2.node A is parent of node B and C.

Child
The immediate successors of a node are
called child nodes. A child which is placed at
the left side is called the left child and a
child which is placed at the right side is
called the right child[4]. In Fig 2.node B and

C are children of node A.

Leaf
A leaf node is the external node which does
not have any child node. In Fig 3. D, E, F, G
are leaf nodes.

Siblings
The child nodes of a given parent node are
called siblings. In Fig 3.nodes B and C are
siblings of node A.

Branch
It is a connecting line between two nodes. A
node can have more than one edge.

Path
Each node has to be reachable from the
root through a unique sequence of edges
called a path. The number of edges in a
path is called the length of path.

Level of a Node
The level of node is its distance from the
root. The level of root is defined as zero.
The level of all other nodes is one more
than its parent node.

Height of a Tree

The height is defined as the maximum
number of nodes in a branch of tree. This is
one more than the maximum level of the
tree. The height of tree in Fig 4.is 4.

Rooted Tree

Figure 2

Figure 4

Figure 3

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

P a g e 1277

A rooted tree is one where we
designate one node as the root. In Fig
4.node A is the root node. Fig 4.is a rooted
tree.

Ordered Tree
If in a tree at each level, an ordering is
defined, then such a tree is called an
ordered tree[5,6].

Binary Tree

A binary tree is a rooted tree in which each

node has at most two children, which are

referred to as the left child and

the right child.

Properties of Binary tree

1. The number of external nodes is one

more than internal nodes.

2. The number of external nodes is at

least h + 1 and at most 2h, where h

is the height of the tree.

3. The number of internal nodes is at

least h and at most 2h – 1.

4. The total number of nodes in a

binary tree is at least 2h + 1 and at

most 2h + 1 – 1.

5. The height h, of binary tree with n

nodes is at least log n + 1 and at

most n.

6. A binary tree with n nodes has

exactly n – 1 edges[7].

Types of Binary Tree

Strictly Binary Tree
A binary tree is a strictly binary tree if and
only if each node has exactly two child
nodes or no nodes. A strictly binary tree
with n leaves always contains 2n – 1 nodes.

Complete binary tree

A binary tree is a full or complete binary
tree if each non-leaf node has exactly two
child nodes and all leaf nodes are at the

same level.

Almost Complete Binary Tree
A binary tree of depth h is an almost
complete binary tree, if any node at level
less than d – 1 has two children. For any
node ‘x’ in the tree with a right descent at
level d, x must have a left child and every
left descendant of x is either a leaf at level d
or has two children. An almost complete
binary tree with n leaves has 2n – 1 nodes
and an almost complete binary tree with n
leaves which is not strictly binary has 2n
nodes[8].

Traversing in a Binary Tree

Traversing means visiting all the nodes of
tree. There are three standard methods to

Figure 5

Figure 6

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

P a g e 1278

traverse the binary trees

i. Preorder traversal

ii. Postorder traversal

iii. Inorder traversal

Preorder traversal
The preorder traversal of a binary tree is a
recursive process. The preorder traversal of
a tree is

a. Visit the root of the tree.

b. Traverse the left subtree in preorder

c. Traverse the right subtree in
preorder

Postorder traversal
The postorder traversal of a binary tree is a
recursive process. The postorder traversal
of a tree is

a. Traverse the left subtree in
postorder

b. Traverse the right subtree in
postorder

c. Visit the root of the tree.

Inorder traversal
The inorder traversal of a binary tree is a
recursive process. The preorder traversal of
a tree is

a. Traverse the left subtree in inorder

b. Visit the root of the tree.

c. Traverse the right subtree in inorder

That is,

Pre-
order

Root Left-sub-
tree

Right-
sub-tree

In-order Left-sub-
tree

Root Right-
sub-tree

Post-
order

Left-sub-
tree

Right-
sub-tree

Root

Example: Consider the following binary
tree.

Preorder Traversal: A, B, D, E, C, G, F

Postorder Traversal: D, E, B, G, F, C, A

Inorder Traversal: D, B, E, A, G, C, F

Binary Search tree

Binary search tree has the property that the
left child contains a smaller value than the
root node and the right child contains a
larger value than the root node.

Operations on Binary Search Tree

The most common operation performed on
a Binary Search Tree is searching for a
key/element stored in the tree. Besides the
search operation, it supports many
operations such as traversal operation
insertion and deletion of data etc.

Searching

Searching in Binary Search Tree is much

faster as compared to other data structures

such as array or linked lists. The TREE-

SEARCH (x,k) algorithm searches the tree

root at x for a node whose key value is

Figure 7

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

P a g e 1279

equal to k. It returns a pointer to

the node if it exists otherwise NIL[9].

TREE-SEARCH (x,k)

1. if x = NIL or k = key[x]

2. then return x

3. if k < key[x]

4. then return TREE-SEARCH(left[x],k)

5. else return TREE-SEARCH(right[x],k)

Insertion Operation

The process of adding new element is called
insertion. Insertion of element in the binary
search tree invokes adding of element to
the leaf node.

Consider a binary search tree T. Suppose an
ITEM of information to be inserted in T.
Then the procedure written below is
followed

1. Compare ROOT with ITEM.

2. If ITEM > ROOT, proceed to right child

and it becomes root for the right

subtree.

3. If ITEM < ROOT, proceed to left child.

4. Repeat the above steps until LEAF is

reached.

5. Now compare ITEM with LEAF

a. if LEAF > ITEM, insert ITEM as left

child

b. if LEAF < ITEM, insert ITEM as

right child

Deletion Operation

The process of deleting an element is called
deletion. Deletion can be performed on any
node i.e. internal node or external node.

Consider a binary search tree T. Suppose an
ITEM of information to be deleted from T.
To delete an ITEM, there are three cases,
depending upon the number of children of
the node to be deleted.

1. If the node to be deleted is a leaf node

then just replace the node with NULL.

2. If the node z to be deleted has a child

node then simply swap the root node

and child node and then replace the

child node with NULL.

3. If the node z to be deleted has a left

child and right child or left subtree and

right subtree then find the inorder

successor of the node to be deleted

and then swap the values of node to be

deleted and inorder successor in the

binary search tree and replace inorder

successor with NULL[10].

Conclusion

The hierarchical file system tell us, how do

files get saved and deleted under

hierarchical directories. Tree is a data

structure which allows you to associate a

parent-child relationship between various

pieces of data and thus allows us to arrange

our records, data and files in a hierarchical

fashion. The central focus in this paper is to

know more about binary tree. We have

learnt properties of binary tree, its various

types. Working with binary search tree i.e.

search, insertion and deletions operations is

done along with algorithms. We have also

learnt tree traversal techniques i.e. reorder,

in order and post order traversal.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A study on Binary Tree Ankit Dalal & Ankur Atri

P a g e 1280

REFERENCES

1. Rowan Garnier; John Taylor (2009).
Discrete Mathematics: Proofs,
Structures and Applications, Third
Edition. CRC Press. p. 620. ISBN 978-1-
4398-1280-8.

2. Steven S Skiena (2009). The Algorithm
Design Manual. Springer Science &
Business Media. p. 77. ISBN 978-1-
84800-070-4.

3. Knuth (1997). The Art Of Computer
Programming, Volume 1, 3/E. Pearson
Education. p. 363. ISBN 0-201-89683-
4.

4. Iván Flores (1971). Computer
programming system/360. Prentice-
Hall. p. 39.

5. Kenneth Rosen (2011). Discrete
Mathematics and Its Applications, 7th
edition. McGraw-Hill Science. p. 749.
ISBN 978-0-07-338309-5.

6. David R. Mazur (2010). Combinatorics:
A Guided Tour. Mathematical
Association of America. p. 246.
ISBN 978-0-88385-762-5.

7. Alfred V. Aho; John E. Hopcroft;
Jeffrey D. Ullman (1983). Data
Structures and Algorithms. Pearson
Education. section 3.4: "Binary trees".
ISBN 978-81-7758-826-2.

8. J.A. Storer (2002). An Introduction to
Data Structures and Algorithms.
Springer Science & Business Media.
p. 127. ISBN 978-1-4612-6601-3.

9. David Makinson (2009). Sets, Logic
and Maths for Computing. Springer
Science & Business Media. p. 199.
ISBN 978-1-84628-845-6.

10. Jonathan L. Gross (2007).
Combinatorial Methods with
Computer Applications. CRC Press.
p. 248. ISBN 978-1-58488-743-0.

