

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

An introduction to Linked List Ankit Dalal & Ankur Atri
 P a g e 1281

An introduction to Linked List

Ankit Dalal1* andAnkur Atri2

 Department of Information Technology, Computer Science and Information Technology,
Dronacharya College of Engineering,Gurgaon-122001, India

*E-mail: ankit.16898@ggnindia.dronacharya.info,ankur.16900@ggnindia.dronacharya.info

Abstract:

This paper is a general overview of

non-linear data structure (Linked lists).

This research paper covers a brief

history of the early development of

Linked lists and the purpose behind this

to learnTypes of linked lists, advantages

and disadvantages and operations on

linked lists which includes creating a

linked list, traversing, insertion of a

node and deletion of a node with

program codes is discussed. Linked list

is used to do many advanced operations

in computer science. Linked lists are a

great way to store a theoretically

infinite amount of data with a small and

versatile amount of code.

Keywords:

Node, reference, linked list, rpt, lpt and

info etc.

An introduction to Linked List Ankit Dalal & Ankur Atri

P a g e 1282

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

History

Linked lists were developed in 1955-1956
by Allen Newell, Cliff Shaw and Harbert A.
Simon at RAND Corporation as the primary
data structure for their Information
Processing Language with which early
artificial intelligence programs, including
the Logic Theory Machine, General Problem
Solver, and a Computer Chess program
were developed[1].

Introduction

Linked lists are linear data structures.
The data is stored in consecutive memory
location. Every element in the structure has
a unique predecessor and unique successor.
In this, elements are stored in a sequential
form. Linked list is among the simplest and
most commonly data structure used to
store similar type of data in memory. It is a
linear collection of data elements called
nodes, where the linear order is given by
means of pointers. Every node has two
parts: first part contains the
information/data and the second part
contains the link/address of the next node
in the list. Linked lists provide advantage
over conventional arrays. The elements of
linked list is not stored in continuous
memory location[2,3]. Memory is allocated
for every node when it is actually required
and will be freed when not needed.

Types of linked lists

Linked lists are classified into following
categories depending upon the number of
pointers on the basis of requirement and
usage.

1. Linear linked list
2. Circular linked list
3. Doubly linked list
4. Circular doubly linked list
5. Header linked list

Definitions

Linear Linked List

In linear linked list each node is divided into
two parts: First part contains the
information of the element. And the second
part contains the address of the next node
in the list. This means, each node has single
pointer to the next node[4]. The pointer of
last node is NULL representing end of the
linked list.

Circular Linked List

This is similar to linear linked list. But here
the pointer of last node is not NULL but
contains address of first node in the list.

An introduction to Linked List Ankit Dalal & Ankur Atri

P a g e 1283

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Doubly Linked List

Doubly inked lists are two-way lists. In this

case, two link fields are there (saylpt which
is predecessor pointer and rptwhich is
successor pointer)instead of one as in singly
linked list. It helps accessing both the
successor and predecessor. The rpt of last
node is NULL[5,6].

Circular Doubly Linked List

 Circular doubly linked list is also a two-way
list which has both successor and
predecessor pointer in circular manner.
Here rpt of last node is not NULL but
contains address of first node and lpt of first
node contains the address of last node in
the list. It is easier to perform insertion and
deletion operation in circular doubly linked
list.

Header Linked List

 Header linked list always contains a single
node, called header node, at the beginning
of the linked list. This header node contains
vital information about the linked list such
as the number of nodes in the list, whether

the list is sorted or not[7].

Advantages

1. Linked lists are dynamic data
structures: Memory is allocated for
every node when it is actually required
and will be freed when not needed.

2. The size is not fixed.

3. Data is stored in non-continues
memory blocks.

4. Insertion and deletion of nodes are
easier and efficient: Linked lists provide
flexibility in inserting and deleting
nodes at any specified position and a
node can be deleted from any position
on the linked list.

Disadvantages

More memory: In the linked list, there is an

special field called link field which holds

address of the next node, so linked lists

require more space[8].

An introduction to Linked List Ankit Dalal & Ankur Atri

P a g e 1284

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Working with Linked List

Singly linear linked list

1. Creating Nodes

2. Traversing of a linked list

3. Insertion in a Singly Linked List

i. At the beginning

ii. At the end

4. Deletion in a Singly Linked List

i. From the beginning

ii. From the end

An introduction to Linked List Ankit Dalal & Ankur Atri

P a g e 1285

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Conclusion

Linked lists are a great way to store a
theoretically infinite amount of data with a
small and versatile amount of code. They
are great in that you can change and write
them to serve your particular needs. For
example: our lists were one directional, in
that the individual node has no idea who is
behind him in the list. This can be easily
altered by the addition of a reference to the
node behind as well as in front. This will
give you greater control over the list. We
could also write sorting algorithms, delete
functions, and any number of methods that
we find beneficial.

REFERENCES

1. Juan, Angel (2006). "Ch20 –Data

Structures; ID06 - PROGRAMMING

with JAVA (slide part of the book

"Big Java", by CayS.

Horstmann)" (PDF). p. 3

2. "Definition of a linked list". National

Institute of Standards and

Technology. 2004-08-16. Retrieved

2004-12-14.

3. Antonakos, James L.; Mansfield,

Kenneth C., Jr. (1999). Practical Data

Structures Using C/C++. Prentice-

Hall. pp. 165–190. ISBN 0-13-

280843-9.

4. Collins, William J. (2005)

[2002]. Data Structures and the Java

Collections Framework. New York:

McGraw Hill. pp. 239–303. ISBN 0-

07-282379-8.

5. Cormen, Thomas H.; Charles E.

Leiserson; Ronald L. Rivest; Clifford

Stein (2003). Introduction to

Algorithms. MIT Press. pp. 205–213

& 501–505. ISBN 0-262-03293-7.

6. Cormen, Thomas H.; Charles E.

Leiserson; Ronald L. Rivest; Clifford

Stein (2001). "10.2: Linked

lists". Introduction to

Algorithms (2md ed.). MIT Press.

pp. 204–209. ISBN 0-262-03293-7.

7. Green, Bert F. Jr. (1961). "Computer

Languages for Symbol

Manipulation". IRE Transactions on

Human Factors in Electronics (2): 3–

8.doi:10.1109/THFE2.1961.4503292.

8. McCarthy, John (1960). "Recursive

Functions of Symbolic Expressions

and Their Computation by Machine,

Part I". Communications of the

ACM 3 (4):

184.doi:10.1145/367177.367199.

