

Optimization Of Venturi Of Carburettor Using Ansys Software

Chakrala Divya & R Himendra

- M Tech (Cad/Cam) Nova College Of Engineering And Technology

College Address - Jafferguda Batasingaram (Vill) Hayathnagar (Mdl)

M-Tech Designation - Assistant Professor

ABSTRACT

The venturi of the carburettor is important that provides a necessary pressure drop in the carburettor device. Angle of venturi helps for Pressure drop in carburettor.

The main aim of the project is to determine the optimum pressure of carburettor by optimising the angle of venturi. To optimise the Pressure in the carburettor, CFD analysis is carried out on venturi of the carburettor. In CFD analysis, parameters like velocity, pressure drop and angle of venturi is determined. Optimum pressure observed in CFD analysis is used as static load for structural static analysis. Carburettor is optimised for different materials (i.e., zinc, aluminium and cast iron).3d model of Carburettor is designed in CAD software and flow analysis is done using CFD software and static analysis is carried out by using CAE software. NX-CAD software is used for 3d modelling and ANSYS software is used for flow and static analysis of carburettor.

METHODOLOGY

- 3d model of carburettor will be generated on NX-CAD software.
- The 3d model of carburettor is converted to parasolid file.
- The parasolid file of carburettor is imported to solid works stimulation to perform flow analysis on carburettor.
- Flow analysis will be done on carburettor for different angles of venturi. (i.e.30⁰, 45⁰, 60⁰).
- From analysis, pressure and velocity are observed for three angles of venturi of carburettor.
- Optimum pressure is observed and taken as load input for static analysis of carburettor.
- Static analysis is carried out on carburettor for different materials.(i.e. Zinc, aluminium, cast iron).
- From analysis, displacements, stresses and factor of safety of carburettor for different materials is determined.

3D MODELLING OF CARBURETTOR

Fig Shows the Isometric view of Carburettor

FLOW ANALYSIS OF CARBURETOR

Fig. Shows the Geometry of carburettor

Fig shows fluid domain and solid domain of carburettor BOUNDARY CONDITIONS:

International Journal of Research

Available at <u>https://edupediapublications.org/journals</u>

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 14 November 2017

Fig shows boundary conditions of pressure applied on the carburettor

Location	Pressure [Pa]	Velocity [m/s]
Convergent	97729.9	68.6
Open of		
venturi	95048.5	94.8
End of		
venturi	89478.1	138.3
Divergent	89825.9	133.8

MATERIAL PROPERTIES:

Material: air (fluid):

PROPERTY	UNITS	VALUES
Density	kg/m3	1.225
Cp (Specific Heat)	j/kg-k	1006.43
Thermal Conductivity	w/m-k	0.0242
Viscosity	kg/m-s	1.79E-05
Molecular Weight	kg/kg mol	28.966
Thermal Expansion Coefficient	1/k	0
Speed of Sound	m/s	340m/s

Results:

<u>Case:1 Carburettor with venturi of 30⁰ angle:</u> Pressure cut plot:

Fig shows variation of pressure in carburettor by cut plot

Velocity cut plot:

Fig shows variation of velocity in carburettor by cut plot

<u>Case:2 Carburettor with venturi of 45⁰ angle:</u> Pressure cut plot:

Fig shows variation of pressure in carburettor by cut plot Velocity cut plot:

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 14 November 2017

Fig shows variation of velocity in carburettor by cut plot

Case:3 Carburettor with venturi of 60⁰ angle: **Pressure cut plot:**

Fig shows variation of pressure in carburettor by cut plot

Fig shows variation of velocity in carburettor by cut plot

locations of carburettor					
Location	Pressure [Pa]	Velocity [m/s]			
Convergent	98902.09	60.77971			
Open of					
venturi	91577.22	126.5504			
End of venturi	87947.87	150.9275			
Divergent	90513.7	137.2439			

Table shows pressure and velocity at different locations of carburattar

The velocity and pressure in the carburettor changes with respect to change in the angle of venturi of the carburettor. It is also concluded that pressure increases with decrease in velocity. The pressure of carburettor for 60° angle of venturi is less compare to 30° and 45° angles of venturi in all the locations of the carburettor. The velocity at all the locations of carburettor is higher for 60⁰ angle of venturi compare to 30[°] and 45[°] angles of venturi. So, the pressure load for static analysis of the carburettor is taken from results of carburettor with 60° angle of venturi. The maximum pressure observed from results of carburettor with 60° angle of venturi is 98.90 KPa.

Static analysis is done on carburettor with 60°

		Velocity
Location	Pressure [Pa]	[m/s]
Convergent	99266.42988	53.01966
Open of		
venturi	95684.29718	94.48036
End of venturi	91841.52715	124.4323
Divergent	92371.83801	120.1502

angle of venturi. Carburettor is studied for a static load of 98.90 KPa. Static analysis is carried out on carburettor for different materials (i.e. aluminium, zinc and cast iron).

STRUCTURAL ANALYSIS OF CARBURETOR Element type: Solid92

Fig. shows the Finite element model of the Carburettor CASE-1: Static analysis of carburettor for

aluminium material

Young's modulus = **70GPa**

Density = **2800 kg/m3**

Yield strength = **276 MPa**

Boundary conditions:

Both sides of carburettor are fixed in all DOF and A Pressure load of 0.98 applied on Carburettor.

Fig. shows the Boundary conditions applied on Carburettor for static analysis

DEFLECTIONS:

Fig. shows Total Deflection for static analysis of carburettor

STRESSES:

Fig Shows Von Misses stress for static analysis of Carburettor

From the analysis, it is observed that the maximum deformation 0.001mm and Von Misses stress 7.71MPa observed on Carburettor. The yield strength of the material (Aluminium) used for Carburettor is 276 MPa. The FOS at most of the locations is 276/7.71 = 35.

CASE: 2 Static analysis of carburettor for cast-iron material:

Fig. shows Total Deflection for static analysis of carburettor

Fig Shows Von Mises stress for static analysis of Carburettor

From the analysis, it is observed that the maximum deformation 0.001mm and Von Mises stress 7.71MPa observed on Carburettor. The yield strength of the material (Cast Iron) used for Carburettor is 240 MPa. The FOS at most of the locations is 240/7.71 = 31.

CASE-3: Static analysis of carburettor for Zinc material:

Young's modul	us =	108 GPa
Yield Strength	=	246 MPa
Density	=	7130 kg/m3

Fig. shows Total Deflection for static analysis of carburettor

Fig Shows Von Mises stress for static analysis of Carburettor

From the analysis, it is observed that the maximum deformation 0.0009mm and Von Mises stress 7.74MPa observed on Carburettor. The yield strength of the material (Zinc) used for Carburettor is 246 MPa. The FOS at most of the locations is 246/7.74 = 31.

Comparison of deflections and stresses of	
carburettor for different materials	

MATERIA	DEFLECTI	STRESS	FACTO
LS	ON	ES	R OF
	(mm)	(Mpa)	SAFET
			Y
Aluminum	0.001	7.71	35
Zinc	0.0009	7.74	31
Cast Iron	0.001	7.71	31

Graphs:

Graph-1: Comparison of Deflection of carburettor

Graph shows comparison of Deflection values of carburettor for different materials

Graph-2: Comparison of Stress values of carburettor for different materials

3: Comparison of factor of safety of carburettor for different materials

carburettor for different materials

RESULTS AND CONCLUSION

Carburettor was studied for flow analysis and static analysis. In flow analysis, carburettor was studied for different angles of venturi to optimize the pressure of the carburettor. In static analysis carburettor was studied for different materials (i.e. Aluminium, Zinc, and Cast Iron).

CASE-1: Flow analysis of carburettor for different angles (i.e. 30^0 , 45^0 , 60^0) of venturi:

Comparison of pressure and velocity at different locations of carburettor for different angles of

venturi

	VENTURI ANGLE					
LOCAT	ANG	LE 30 ⁰	ANGLE 45 ⁰		ANGLE 60 ⁰	
ION	Press			Veloc	Press	Veloc ^{1.}
	ure	Velocit	Pressu	ity	ure	ity
	[Pa]	y [m/s]	re [Pa]	[m/s]	[Pa]	[m/s] _{2.}
Converg	9772		99266.		9890	60.77
ent	9.9	68.63	4	53.0	2.09	971 3.
Open of	9504		95684.		9157	126.5
venturi	8.5	94.88	3	94.4	7.22	504
End of	8947		91841.		8794	150.94.
venturi	8.1	138.3	5	124.4	7.87	275
Diverge	8982		92371.		9051	137.2
nt	5.9	133.8	8	120.1	3.7	4395.

CASE-2: Static analysis of carburettor for different materials (i.e. Aluminium, Zinc, and Cast Iron): Comparison of deflections and stresses of

carburettor for different materials

S.N O	MATERI ALS	DEFLECT ION (mm)	STRESS ES (Mpa)	FACT OR OF SAFE TY
1	Aluminu m	0.001	7.71	35
2	Zinc	0.0009	7.74	31
3	Cast Iron	0.001	7.71	31

Conclusion:

Carburettor was developed in UNIGRAPHS software. Flow analysis of carburettor was done using SOLID WORKS STIMULATION. Static analysis of carburettor was done using ANSYS software. Flow analysis was done on carburettor for different angles (i.e. 30^{0} , 45^{0} , and 60^{0}) of venturi to optimize the pressure of carburettor. From Flow analysis, Venturi with 45^{0} angle has optimized pressure value for carburettor. The optimized pressure of 98Mpa was obtained was taken as input for Static analysis of carburettor. Static analysis was done on carburettor for different materials (i.e. Aluminium, Zinc, and Cast Iron). From static analysis, all materials have Von misses less than their yield strengths. So, all the materials are suitable for carburettor but, by considering Factor of safety, Aluminium has high Factor of safety value than Zinc and Cast Iron materials. Hence, it was concluded that Aluminium is best suitable material for carburettor.

REFERENCES

CFD Analysis of Flow through Venturi by Jay Kumar, Jaspreet Singh, Harsh Kansal, Gursimran Singh Narula, Prabhjot Singh.

CFD analysis of flow through venturi of a carburettor by Deepak ranjan bhola.

A study on Optimization of Flow through Venturi of a Carburettor by Shashwat Sharma, Prateek Jain, Adhar Singh.

CFD analysis on a simple carburettor for different positions of throttle valve and fuel nozzle valve by Rangu P, Ganesha T, M. C. Math.

5. Computational flow analysis of carburettor venturi effecting on obstacles by G.Sivarayudu and Dr. B.Jayachandraiah.

- 6. CFD analysis of the natural gas based carburettor for a two stroke spark ignition engine by Harshwardhan Sharma, Satyendra Singh and Ravi Goel.
- CFD Simulation and Geometrical Optimization of Producer Gas Carburettor by Shirish L. Konde, Dr. R. B. Yarasu.