

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 307

Digital Art-Drawing In The Air Through Gesture

U.Sai Sudha & S.Srivani

1
 PG Scholar, Dept Of ECE, Mallareddy Engineering college for Women, Maisammaguda, Secunderabad,

Telangana., India.
2Associate, Professor, Dept Of ECE, Mallareddy Engineering college for Women Maisammaguda,

Secunderabad, Telangana., India.

Abstract: Gesture Recognition is a technology

which is used to identify human gestures with the

help of mathematical algorithms. Gesture

recognition recognizes the hand, tracks the hand

movements & also provides information about hand

position orientation and flux of the fingers. The

color markers are placed at the tip of the user

fingers. This helps the webcam to identify the

movement of hand and the gesture recognition. The

drawing application allows the user you to draw on

any surface by tracking the fingertip movements of

the user’s index finger. The pictures that are drawn

by the user can be stored and replaced on any other

surface. The user can also shuffle through various

pictures and drawing by using the hand gesture

movements.

Keywords: Raspberry Pi, Python, open CV.

Overview:

The project mainly focuses on the basis

to implement the object detection and tracking

based on its color, which is a visual based

project i.e., the input to the project will be the

video/image data which is continuously captured

with the help of an ipcam which is interfaced to

the Raspberry Wi-Fi. It will detect the object and

it tracks that object by moving the camera in the

direction of the detected object. The visual data

captured by the webcam is processed in the

Raspberry Pi and the object is detected based on

the color or shape and if the object is detected,

the servo motor is rotated in such a way that

wherever the object moves, the camera will be

pointing to that object.

 The objective is to detect an object based

on color and the make use of open source

hardware, hence Raspberry Pi processor board is

the best option for an individual interested in low

cost Arm processor. It has many inbuilt features

and many ports which makes the used to

experience the power of using a processor. The

board comes with USB ports to which keyboard

and mouse, Wi-Fi dongle can be connected

which gives the feeling of working on a system.

I. INTRODUCTION

With the rapid development of computer

technology, contemporary human-computer

interaction (HCI) devices/techniques have

become indispensable in individuals’ daily lives.

HCI devices/techniques have also dramatically

altered our living habits with computers,

consumer electronics, and mobile devices. The

ease with which an HCI device or technique can

be understood and operated by users has become

one of the major considerations when selecting

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 308

such a device. Therefore, it is necessary for

researchers to develop advanced and user-

friendly HCI technologies which are able to

effortlessly translate users’ intentions into

corresponding commands without requiring

users to learn or accommodate to commands

without requiring users to learn or accommodate

to the device. Technologies are being developed

which are able to intuitively express users’

intentions, such as handwriting, gestures, and

human body language, to naturally control HCI

devices. These technologies have many

applications in the fields of remote control,

virtual reality, sign language, signature

authentication, sport science, health care, and

medical rehabilitation.

Current trends in human machine interface have

developed quit rapid in consumer devices such

as multitouch of iPhone, motion sensing devices

of Wii, and etc. However, the hand tracking

systems as user input have been limited due to

the technical constraints and prices. In this paper,

we introduce a hand motion capture system

using a single camera that enable to track 2D

hand pose and interact with applications in real-

time. Our goal is aimed to design the system that

uses a consumer grade webcam as a low-cost

approach while having to deal with the

robustness, precision, and real-time constraints.

There are many research try to solve the same

problem. A webcam generally sits on top of the

computer screen looking down towards the

marker of user’s hands. Our related work is

presented in the following sections: system

overview, design, evaluation, and future work.

II. RELATED WORK:

A. Trackers Using Color Information As a

fundamental problem in vision, visual

tracking has been drawing research attention

for decades. A comprehensive review of the

topic can be found. Since our focus is on

integrating color information in tracking, we

review only previous color trackers due to

space limitation. Table I lists the

abbreviations of trackers discussed in this

paper. A notable early work on color

tracking is the color particle filter introduced,

which calculates the likelihood of each

particle by comparing its color histogram

from the HSV color space with the reference

color model. In the target model and target

candidates are represented by smoothed color

histograms quantized from the RGB color

space, and mean shift is used to minimize the

distance between the discrete distributions of

the target model and target candidates. In

RGB color distribution was used to describe

the target model and candidates, and the

target object was located by minimizing the

Kullback Leibler distance between the color

distributions of the target model and

candidates with the help of a trust-region

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 309

method. VTD integrates basic trackers

derived from the combination of different

basic observation and motion models, and

four basic observation models, which use

hue, saturation, intensity and edge templates

as features respectively, are adopted. LOT

measures the similarity between a candidate

and the target using locally orderless

matching, and HSV color space is used to

describe the appearance of each pixel.

MEEM uses features extracted in the LAB

color space. In the most recent work, CSK is

extended with color names, and to speed up,

the dimension of the original color names is

reduced with an adaptive dimensionality

reduction technique. There are also trackers

that take color input, but do not explicitly

exploit the use of color information. Despite

previous arts, there is a lack of a systematic

study and understanding of how color

information can be used to improve visual

tracking. Our work aims to fill the gap by

thoroughly investigating the behavior of

numerous state-ofthe-art visual trackers with

various color representations.

B. Color Information in Other Vision

Tasks:

 Not surprisingly, the discriminative

power of color information has been

systematically investigated for various vision

topics, such as object recognition, human

action recognition, object detection, etc.

While being highly motivated by these

pioneering works and borrowing some ideas

from them, our work however focuses on

visual tracking. To the best of our

knowledge, this is the first comprehensive

study on encoding color information for

visual tracking. In fact, as shown in our

experiments, many modern grayscale

trackers, when augmented with color

information, outperform previously proposed

color trackers.

Working/ Design Theory:

Open CV usually captures images and videos in

8-bit, unsigned integer, BGR format. In other

words, captured images can be considered as

3 matrices; BLUE, GREEN and RED (hence the

name BGR) with integer values ranges from 0 to

255.

The following image shows how a color image is

represented using 3 matrices.

In the above image, each small box

represents a pixel of the image. In real images,

these pixels are so small that human eye cannot

differentiate.

Usually, one can think that BGR color space is

more suitable for color based segmentation.

But HSV color space is the most suitable color

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://en.wikipedia.org/wiki/HSL_and_HSV

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 310

space for color based image segmentation. So,

in the above application, I have converted the

color space of original image of the video from

BGR to SV image.

HSV color space is also consists of 3

matrices, HUE, SATURATION and VALUE.

In OpenCV, value range

for HUE, SATURATION and VALUE are

respectively 0-179, 0-255 and 0-

255. HUE represents the

color, SATURATION represents the amount to

which that respective color is mixed with white

and VALUE represents the amount to which

that respective color is mixed with black.

In the above application, I have

considered that the red object

has HUE, SATURATION and VALUE in betw

een 170-180, 160-255, 60-255 respectively.

Here the HUE is unique for that specific

color distribution of that object.

But SATURATION and VALUE may be vary a

ccording to the lighting condition of that

environment.

Hue values of basic colors:

 Orange 0-22

 Yellow 22- 38

 Green 38-75

 Blue 75-130

 Violet 130-160

 Red 160-179

These are approximate values. You have to

find the exact range of HUE values according to

the color of the object. I found that the range of

170-179 is perfect for the range of hue values of

my object. The SATURATION and VALUE is

depend on the lighting condition of the

environment as well as the surface of the object.

After thresholding the image, you'll see small

white isolated objects here and there. It may be

because of noises in the image or the actual

small objects which have the same color as our

main object. These unnecessary small white

patches can be eliminated by

applying morphological opening. Morphologic

al opening can be achieved by a erosion,

followed by the dilation with the same

structuring element.

Thresholded image may also have small white

holes in the main objects here and there. It may

be because of noises in the image.

These unnecessary small holes in the main object

can be eliminated by

applying morphological closing. Morphologica

l closing can be achieved by a dilation, followed

by the erosion with the same structuring element.

void inRange(InputArray src, InputArray

lowerb, InputArray upperb, OutputArray

dst);

Checks that each element of 'src' lies between

'lowerb' and 'upperb'. If so, that respective

location of 'dst' is assigned '255' , otherwise '0'.

(Pixels with value 255 is shown as white

whereas pixels with value 0 is shown as black)

Arguments –

 InputArray src - Source image

 InputArray lowerb - Inclusive lower

boundary (If lowerb=Scalar(x, y, z),

pixels which have values lower than x, y

and z for HUE, SATURATION and

VALUE respectively is considered as

black pixels in dst image)

 InputArray upperb - Exclusive upper

boundary (If it is upperb=Scalar(x, y, z),

pixels which have values greater or equal

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 311

than x, y and z for HUE, SATURATION

and VALUE respectively is considered as

black pixels in dst image)

 OutputArray dst - Destination image

(should have the same size as

the src image and should be 8-bit

unsigned integer, CV_8U)

void erode(InputArray src, OutputArray

dst, InputArray kernel, Point anchor=Point(-

1,-1), int iterations=1, int

borderType=BORDER_CONSTANT, const

Scalar&

borderValue=morphologyDefaultBorderValu

e())

This function erode the source image and stores

the result in the destination image. In-place

processing is supported. (which means you can

use the same variable for the source and

destination image). If the source image is multi-

channel, all channels are processed

independently and the result is stored in the

destination image as separate channels.

Arguments -

 InputArray src - Source image

 OutputArray dst - Destination image

(should have the same size and type as

the source image)

 InputArray kernel - Structuring element

which is used to erode the source image

 Point anchor - Position of the anchor

within the kernel. If it is Point(-1, -1), the

center of the kernel is taken as the

position of anchor

 int iterations - Number of times erosion

is applied

 int borderType - Pixel extrapolation

method in a boundary condition

 const Scalar& borderValue –

Value of the pixels in a boundary

condition if borderType

= BORDER_CONSTANT

void dilate(InputArray src, OutputArray dst,

InputArray kernel,

Point anchor=Point(-1,-1), int iterations=1, int

borderType=BORDER_CONSTANT, const

Scalar&

borderValue=morphologyDefaultBorderValu

e());

This function dilates the source image

and stores the result in the destination image. In-

place processing is supported. (which means you

can use the same variable for the source and

destination image). If the source image is multi-

channel, all channels are processed

independently and the result is stored in the

destination image as separate channels.

Arguments –

 InputArray src - Source image

 OutputArray dst - Destination image

(should have the same size and the

type as the source image)

 InputArray kernel - Structuring

element which is used to dilate the

source image

 Point anchor - Position of the anchor

within the kernel. If it is Point(-1, -1),

the center of the kernel is taken as the

position of anchor

 int iterations - Number of times

dilation is applied

 int borderType - Pixel extrapolation

method in a boundary condition

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 312

 const Scalar& borderValue - Value

of the pixels in a boundary condition

if borderType

= BORDER_CONSTANT

void cvtColor(InputArray src, OutputArray

dst, int code, int dstCn=0)

This function convert a source image from one

color space to another. In-place processing is

supported. (which means you can use the same

variable for the source and destination image)

 InputArray src - Source image

 OutputArray dst - Destination image

(should have the same size and the depth

as the source image)

 int code - Color space conversion code

(e.g -

 COLOR_BGR2HSV, COLOR_RGB2H

SV, COLOR_BGR2GRAY, COLOR_B

GR2YCrCb, COLOR_BGR2BGRA, etc)

 int dstCn - Number of channels in the

destination image. If it is 0, number of

channels is derived automatically from

the source image and the color

conversion code.

CONCLUSION:

We designed and build a model that can

detect the object of specified colour and that

works on the basis of visual data captured from a

typical webcam which has a fair clarity. The

algorithm is tested in the laboratory live and the

success rate is 100%. The algorithm works well

under all conditions and the time taken to detect

and track the object is

V11 REFERENCES:

[1] K. Altun, B. Barshan, and O. Tunçel,

“Comparative study on classifying human activities

with miniature inertial and magnetic sensors,”
Pattern Recognit., vol. 43, no. 10, pp. 3605–3620,

2010.

[2] A. Akl, C. Feng, and S. Valaee, “A novel

accelerometer-based gesture recognition system,”

IEEE Trans. Signal Process., vol. 59, no. 12, pp.
6197–6205, Dec. 2011.

[3] W. C. Bang, W. Chang, K. H. Kang, E. S. Choi,
A. Potanin, and D. Y. Kim, “Self-contained spatial

input device for wearable computers,” in Proc. IEEE
Int. Conf. Wearable Comput., Oct. 2003, pp. 26–34.

[4] G. Bailador, C. Sanchez-Avila, J. Guerra-

Casanova, and A. de Santos
Sierra, “Analysis of pattern recognition techniques

for in-air signature biometrics,” Pattern Recognit.,

vol. 44, nos. 10–11, pp. 2468–2478, 2011.

[5] C. M. N. Brigante, N. Abbate, A. Basile, A. C.

Faulisi, and S. Sessa, “Towards miniaturization of a

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 313

MEMS-based wearable motion capture system,”

IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3234–
3241, Aug. 2011.

[6] M. J. Caruso, “Application of magnetoresistive
sensors in navigation systems,” in Proc. SAE, 1997,

pp. 15–21.

 [7] R. Xu, S. Zhou, and W. J. Li, “MEMS

accelerometer based nonspecificuser hand gesture

recognition,” IEEE Sensors J., vol. 12, no. 5, pp.
1166–1173, May 2012.

[8] Z. Dong, C. Wejinya, and W. J. Li, “An optical-
tracking calibration method for MEMS-based digital

writing instrument,” IEEE Sensors J., vol. 10, no. 10,

pp. 1543–1551, Oct. 2010.

[9] M. H. Ko, G. West, S. Venkatesh, and M. Kumar,
“Using dynamic time warping for online temporal

fusion in multisensor systems,” Inform. Fusion, vol.

9, no. 3, pp. 370–388, 2010.

[10] Y. S. Kim, B. S. Soh, and S. G. Lee, “A new

wearable input device: SCURRY,” IEEE Trans. Ind.
Electron., vol. 52, no. 6, pp. 1490–1499, Dec. 2005.

[11] S. Kallio, J. Kela, P. Korpipää, and J.
Mäntyjärvi, “User independent gesture interaction for

small handheld devices,” Int. J. Pattern Recognit

Artif. Intell., vol. 20, no. 4, pp. 505–524, 2006.

[12] S. Katsura and K. Ohishi, “Acquisition and

analysis of finger motions by skill preservation
system,” IEEE Trans. Ind. Electron., vol. 54, no. 6,

pp. 3353–3361, Dec. 2007.

[13] S. Kim, G. Park, S. Yim, S. Choi, and S. Choi,

“Gesture-recognizing hand-held interface with

vibrotactile feedback for 3D interaction,” IEEE
Trans. Consum. Electron., vol. 55, no. 3, pp. 1169–

1177, Aug. 2009.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

