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Abstract: 

During this paper  we will focus on discussing crystals with a discrete translational symmetry, 

i.e. crystals which are formed by the combination of a Bravais lattice and a corresponding basis. 

Despite this restriction there are still many different lattices left satisfying the condition. However, 

there are some lattices types that occur particularly often in nature. Or some - actually distinct -

 lattices share certain properties. These aspects arise from the symmetry of the lattices. 

 

Introduction 
Solids are of two types: Amorphous and 

crystalline. In amorphous solids, there is no order 

in the   arrangement of their constituent atoms 

(molecules). Hence no definite structure could be 

assigned to them. A substance is said to be 

crystalline when the arrangement of the units 

(atoms, molecules or ions) of matter inside it is 

regular and periodic.  

 

Space lattice: 

An array of points which describe the three 

dimensional arrangement of particles (atoms, 

molecules or ions) in a crystal structure is called 

space lattice. Here environment about each point 

should be identical.  

 

Basis: 

A crystal structure is formed by 

associating with every lattice point a unit 

assembly of atoms or molecules identical in 

composition. This unit assembly is called basis.  

                        A crystal structure is formed by the 

addition of a basis to every lattice point.  

                                              i.e., lattice + Basis = 

crystal structure. 

                       Thus the crystal structure is real and 

the crystal lattice is imaginary.  

 
Bravais lattice: 

For a crystal lattice, if each lattice point substitutes for an identical set of one or more atoms, then the 

lattice points become equivalent and the lattice is called Bravais lattice. On the other hand, if some of the 

lattice points are non-equivalent, then it is said to be a non-Bravais lattice.  
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Unit cell and lattice parameters: 

The smallest portion of the crystal which 

can generate the complete crystal by repeating its 

own dimensions in various directions is called unit 

cell. 

The position vector R for any lattice point in a 

space lattice can be written as 

                                                                R= 

n1a+n2b+n3c 

Where a, b and c are the basis vector set and n1, 

n2, n3 are a triplet of integers 0,±1,±2, etc., whose 

value depends on the particular lattice point . The 

angles between the vectors b and c, c and a, a and 

b are denoted as ,  and  and are called 

interfacial angles. The three basis vectors and the 

three interfacial angles, form a set of six 

parameters that define the unit cell, and are called 

lattice parameters

.  

 

 
 

 

 

 Primitive and Non primitive cells: 

 

A primitive cell is a minimum volume unit cell. Consider a bravais lattice (in two dimensions) as 

shown below: 

 
We can imagine two ways of identifying 

the unit cell in this structure. One is, with a1 and 

b1 as the basis vectors in which case, the unit cell 

will be a parallelogram. Here four lattice points 

are located at the vertices. This is a primitive cell. 

Other one is with the basis vectors a2 and b2 

which would make a rectangle for the unit cell. 

Here in addition to the 4 points at the corners, one 

lattice point is at the centre. This is a nonprimitive 

cell. Thus the area of the non primitive cell is an 

integral multiple of the primitive cell. 

Crystal Systems 
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Crystallographers have shown that only seven 

different types of unit cells are necessary to 

create all point lattice 

Cubic a= b = c ; α = β = γ = 90 

Tetragonal a= b ≠ c ; α = β = γ = 90 

Rhombohedral a= b = c ; α = β = γ ≠ 90 

Hexagonal a= b ≠ c ; α = β = 90, γ =120 

Orthorhombica≠ b ≠ c ; α = β = γ = 90 

Monoclinic a≠ b ≠ c ; α = γ = 90 ≠ β  

Triclinic a≠ b ≠ c ; α ≠ γ ≠ β ≠ 90 

Bravais Lattices 

 

 

Crystal systems: 

Bravais demonstrated mathematically that 

in 3-dimensions, there are only 14 different types 

of arrangements possible. These 14 Bravais 

lattices are classified into the seven crystal 

systems on the basis of relative lengths of basis vectors and interfacial angles.  

Seven crystal systems are:  

1. Cubic   2. Tetragonal   3. Orthorhombic   4. Monoclinic   5. Triclinic   6. Trigonal (Rhombohedral)  

7. Hexagonal 

 

 

 

 

The 14 Bravais lattices are 

1. Simple cubic                                 2. Body centered cubic                          3. Face centered cubic 

 
 

 

 

4. Simple tetragonal                                  5. Body centered tetragonal 

 
6. Simple orthorhombic     7.Base centered                8. Body centered                  9. Face centered  
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10. Simple monoclinic            11. Base centered monoclinic               12. Triclinic 

      
 

 

 

 

13. Trigonal( Rhombohedral)                                      14. Hexagonal 
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Direction and planes in a crystal: 
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Many physical properties of crystalline 

solids are dependent on the direction of 

measurement or the planes across which the 

properties are studied. In order to specify 

directions in a lattice, we make use of lattice basis 

vectors a, b and c.  

                     In general, any directional vector can 

be expressed as  

                                                          R= 

n1a+n2b+n3c 

where n1, n2 and n3 are integers. The direction of 

the vector R is determined by these integers. If 

these numbers have common factors, they are 

removed and the direction of R is denoted as [n1 

n2 n3]. A similar set of three integers enclosed in a 

round bracket is used to designate planes in a 

crystal.  

 

Lattice planes and Miller indices: 

The crystal lattice may be regarded as 

made up of a set of parallel, equidistant planes 

passing through the lattice points. These planes 

are known as lattice planes and may be 

represented by a set of three smallest possible 

integers. These numbers are called ‘Miller 

indices’ named after the crystallographer 

W.H.Miller.  

 

Determination of Miller indices: 

Consider a crystal plane intersecting the crystal 

axes as shown: 
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The procedure adopted to find the miller indices 

for the plane is as follows: 

1. Find the intercepts of the plane with the crystal 

axes along the basis vectors a, b and c. Let the 

intercepts  

    be x, y and z respectively. 

2. Express x, y and z as fractional multiples of the 

respective basis vectors. Then we obtain the 

fractions, 

    
x

a
 ,
y

b
,
z

c
 . 

3. Take the reciprocal of the three fractions to 

obtain 
 

 
 
 

 
 
 

 
 . 

4. Find the least common multiple of the 

denominator, by which multiply the above three 

ratios. This   

   operation reduces them to a set of 3 integers (h k 

l) called miller indices for the crystal plane.  

   For the plane given above, 

   1. x = 
2a

3
       y = 

3b

2
      z = 2c 

   2. ( 
x

a
 
y

b
 
z

c
 ) = (

2

3
   

3

2
  2)                               

   3. Taking reciprocal, (
 

 
  
 

 
   

 

 
                               

   4. Multiplying throughout by the least common 

multiple 6 for the denominator, we have the miller 

indices,    

       (9 4 3) 

 

Expression for interplanar spacing: 

 
Let ABC be one of the parallel planes represented by the miller indices (h k l). Its intercepts on the 

crystal axes are x, y and z. Another plane parallel to the plane ABC passes through the origin O. If OP is 

drawn perpendicular from O to the plane ABC, then OP is equal to the interplanar distance dhkl. Let the 

angle made by OP with respect to the axes X, Y and Z be θ1, θ2 and θ3 respectively.  

                                                   Now cos θ1 = 
dh l

x
                        

                     Similarly we can write cos θ2 = 
dh l

y
    and cos θ3 = 

dh l

z
               

                     But for orthogonal co-ordinates, cos
2
 θ1+ cos

2
 θ2+ cos

2
 θ3 = 1 
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                                                        i.e., 
dh l
2

x2
 

dh l
2

y2
 

dh l
2

z2
=1 

         But from the definition of miller indices, x= 
 

 
       y= 

 

 
       and   z= 

c

l
         

                  The interplanar spacing dhkl is given by, 

     
 

√  

   
  

   
  

  

 

For a cubic lattice, a = b =c  

                                                                            
 

√        
 

 

Number of atoms per unit cell (n): 

1. Simple cubic lattice 

There are eight corner atoms. Each corner 

atom is shared by eight unit cells. Hence the share 

of each unit cell is equal to one eighth of an atom. 

Therefore the total number of atom in one unit cell 

= 8 x 1/8 = 1. 

2. Body centered cubic lattice 

There are eight atoms at the eight corners 

of the unit cell and one atom at the body centre. 

As each corner atom is shared by eight unit cells, 

the contribution to each cell is 8 x 1/8 =1. 

Moreover, there is one body centre atom per unit 

cell. Therefore total number of atoms per unit 

cell= 1+1 = 2. 

3. Face centered cubic lattice 

There are eight atoms at the eight corners 

of the unit cell and six face centered atoms at the 

centre of six faces. As each corner atom is shared 

by eight unit cells, the contribution to each cell is 

8 x 1/8 =1. Each face centered atom is shared by 

two unit cells. Hence the contribution of six face 

centered atoms to each unit cell is 6 x ½ = 3. 

Therefore the total number of atoms per unit cell 

= 1 + 3 = 4.  

Co-ordination number: 

Co-ordination number is the number of 

equidistant neighbours surrounding an atom in the 

given crystal structure. When the coordination 

number is larger, the structure is more closely 

packed.  

1. Simple cubic lattice 

Here any corner atom has four nearest 

neighbours in the same plane and two nearest 

neighbours in a vertical plane. Hence co-

ordination number in this case is six. 

2. Body centered cubic lattice 

For any corner atom of the unit cell, the 

nearest atoms are the atoms which are at the 

centers of unit cells. A corner atom is surrounded 

by eight unit cells having eight body centered 

atoms. Hence co-ordination number is eight. 

3. Face centered cubic lattice 

For any corner atom, there will be four 

face centered atoms of the surrounding unit cells 

in its own plane as nearest neighbours and four 

face centered atoms each in two perpendicular 

planes. Hence co-ordination number is 4 + 4 + 4 = 

12. 

 

Relation between atomic radius and the lattice 

constant 

Atoms touch each other at least in one 

direction in a unit cell. All atoms could be 

assumed to be spherical in shape.  

1. Simple cubic lattice 

The front view of one face of unit cell is shown: 

 
 If ‘a’ is the lattice constant and ‘R’ the atomic radius, a = 2R. 
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2. Body centered cubic lattice 

 
In this structure the corner atoms do not touch each other. But each corner atom touches the central 

atom. From the geometry of the cube, 

                                                       AB
2
 = BC

2
 + AC

2
 

                                         But AB=4R, BC
2
=a

2
+a

2  
 and AC=a 

                                              (4R)
2
 = a

2
+a

2 
+a

2
 = 3a

2
 

                                                      4R = 3 a 

                                                         a = (4/3) R   where R is the atomic radius. 

3. Face centered cubic lattice 

 
Corner atoms do not touch each other. But each corner atom touches the central atom in the 

corresponding face as shown: 

                                                       From figure, AB
2
 = a

2
+a

2  
  

                                                                 But AB=4R 

                                                                (4R)
2
 = 2a

2 

                                                                        4R = 2 a 

                                                                    or   a = 
 

√ 
                               

                                                                        a = 22 R  where R is the atomic radius. 

Packing factor (fraction): 

Packing factor is the ratio of total volume of the atoms in the unit cell to the total available volume in 

the unit cell.  

                                  Packing factor (p.f) = 
n  

4

3
 R3 

a3
      where ‘R’ is the atomic radius   

                                                                                          and ‘a’ is the lattice constant                          

1. Simple cubic lattice: 
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   Here n = 1 and a = 2R      (p.f) = 
1 x  

4

3
 R3 

 2R 
3   

 

 
                                            

2. Body centered cubic lattice: 

  Here n = 2 and a =  
 

√ 
                     (p.f)  

  
 

 
   

 (
 

√ 
)   

 = 
√   

 
      

3. Face centered cubic lattice: 

  Here n = 4 and a = 22 R              (p.f) = 
  

 

 
   

      
 = 

 

 √ 
      

Lattice parameter and density: 
Density of a cubic crystalline material can be written as 

Density  = 
                                           

                         
 

                 
                                                              

                         
 

                =  
 n

M

N 
 

a3
                                   

          Where ‘M’ is the molecular weight, ‘NA’ the  vogadro number and ‘a’ the lattice parameter. 

        a
3
 = 

  

   
                             

     or, a =  
  

   
 
 

                           

Crystal structure of NaCl: 

The crystal structure of NaCl is shown in figure: 

 
NaCl is an example of face centered cubic lattice. NaCl is an ionic compound and Na

+
 and Cl

- 
ions 

occupy alternate positions in the lattice. Thus there are four Na
+
 and Cl

-
 ion pairs (molecules) per unit cell. If 

a corner Na
+
 ion is taken as origin, the position co-ordinates of Na

+
 and Cl

-
 ions are as follows: 

           Na
+ 

 0 0 0      ½ ½ 0  ½ 0 ½  0 ½ ½     

           Cl
-
            ½ ½ ½                0 0 ½   0 ½ 0   ½ 0 0 

          Lattice constant is related to the atomic radius R through the relation a = 
 

√ 
         

         The number of molecules per unit cell is 4 and the coordination number is 6. 

                                       Interatomic distance is 2.813 Å. 

               KCl, PbS, MnO and AgBr possess crystal structure identical to NaCl. 

 

Crystal structure Diamond:  

The diamond lattice is composed of two interpenetrating face centered cubic sub lattices, one of 

which shifted relative to the other by one fourth of a body diagonal as shown: 

                 The position co-ordinates of carbon atoms are 
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            0 0 0

  ½ ½ 0   ½ 0 ½  0 ½ ½  ¼ ¼ ¼  

           Lattice constant is related to the atomic radius R through the relation a = 
 

√ 
          

             The number of atoms per unit cell is 8 and the coordination number is 4. 

                                                    Packing fraction is 
√    

  
                 

                                       Ge and Si possess diamond structure. 

 
 

Bragg’s law: 

 

X-rays of wavelength ‘’ be incident upon the crystal at an angle ‘’.The crystal acts as a series of parallel 

reflecting planes. The intensity of the reflected beam at certain angles will be maximum when the path 

difference between the two reflected waves from two different planes is n. Lattice planes are separated by a 

distance ‘d’.  

               From figure, 

               Path difference = PE + EQ = BE sin + BE sin = d sin + d sin = 2d sin 

                       Intensity of the reflected light will be maximum when path difference is n. 

                                                           i.e., 2d sin = n 

                                                This result is known as Bragg’s law.  

                  Where ‘’ is called Bragg angle or glancing angle and ‘n’ is the order of diffraction.  

 

Bragg’s X-ray spectrometer: 
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Bragg’s X-ray spectrometer consists of three 

parts: 

1. A source of X-rays (X-ray tube) 

2. A crystal held on a circular turn table provided 

with vernier 

3. A detector (ionization chamber) 

X-rays from an X-ray tube collimated by 

two narrow slits S1 and S2 are allowed to fall upon 

the crystal C. The crystal is mounted on the turn 

table, which can rotate about a vertical axis and its 

position can be determined by vernier V1. The 

table is provided with a radial arm which carries 

ionization chamber. This arm can also be rotated 

about the same vertical axis as the crystal. The 

position of this arm can be determined by the 

vernier V2. The ionization chamber is connected 

to an electrometer E to measure the ionization 

current. The slits S3 and S4 limit the width of the 

diffracted beam.  

The crystal table and ionization chamber 

are connected in such a way that the chamber 

turns through 2, when the crystal turns through 

.  

 
To begin with, the glancing angle  is kept very small and corresponding ionization current is noted. 

The glancing angle is increased in equal steps and in each case, ionization current is noted down. The 

ionization current is plotted against the glancing angle.  

 
This graph is called X-ray spectrum. The 

pea s in the graph occur whenever Bragg’s law is 

satisfied. One can measure the interplanar spacing 

‘d’ through Bragg’s relation 2d sin = n, by 
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using the measured value of ‘’, the order ‘n’ and 

x-ray wavelength ‘’.  

sc, fcc and bcc    structures.  

 

Conclusion:  
Growth of single crystals and their 

characterization towards device fabrication have 

assumed great impetus due to their importance for 

both academic as well as applied research. The 

rapid advances in microelectronics, 

communication technologies, medical 

instrumentation, energy and space technology are 

possible only after the remarkable progress in 

fabrication of large perfect crystals. . Further 

progress in crystal growth technology is required 

for significant contributions to the energy crisis. 

Besides, the dream of laser fusion energy and 

other novel technologies can only be realized after 

appropriate progress in the technology of crystal. 

The strong influence of single crystals in the 

present day technology is evident from the recent 

advancements in the above mentioned fields. 

Hence, in order to achieve high performance from 

the device, good quality single crystals are 

needed. The rapid development of optical 

communication system has led to a demand for 

Nonlinear Optical (NLO) materials of high 

performance for use as components in optical 

devices. NLO materials are used in frequency 

conversion, which is a popular technique for 

extending the useful wavelength range of lasers. 

The search for new materials has identified novel 

systems of considerable potential and high 

performance and the improvements in the 

properties of the known crystals is a never ending 

187 process. Therefore, special consideration is 

given not only to the possibility of changing 

significant functional characteristics of the crystal, 

but also to the creation of properties which is new 

to the pure crystal by adding different impurities. 

Potassium dihydrogen phosphate (KDP) is a 

model system for nonlinear optical device 

application, it continues to be an interesting 

material both academically and industrially and is 

extensively studied from various aspects. Its 

excellent qualities such as high nonlinear 

conversion efficiency, wide optical transmission 

range with low cutoff wavelength and high laser 

damage threshold has drawn the attention of 

several crystal growers. Many research works 

have been resulted in the modification of KDP 

properties and growth rates by varying the growth 

conditions and by adding suitable impurities 
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