

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2663

Implementation And Verification Of Generic Universal

Memory Controller Based On Sv
P NAVYA SREE 1, W POORNIMA 2 , P SRIKANTH 3

1. P. NAVYA SREE, M.tech student, Dept of Ece, Mallareddy Engineering College For Women (MRECW),

2. Guide details: W.POORNIMA, M.tech, Assistant Professor, Mallareddy Engineering College For Women(MRECW)

3. Guide details: P.SRIKANTH, M.tech, working as senior verification engineer at wipro in vlsi domain

Abstract— This paper presents a coverage driven

constraint random based functional verification method

based on the System Verilog (SV) for Generic Universal

Memory Controller Architecture. It improves the

performance of the existing memory controllers through a

complete integration of the existing memory controllers

features in addition of providing novel features. It also

reduces the power consumption by using different power

levels supported to fit all power scenarios.

Some of the coverage points have been covered to verify

the validation of the integrated features which makes the

proposed universal memory controller replaces the

existing controllers on the scene as it provides all of their

powerful features in addition of novel features to control

two of the most dominated types of memory; FLASH and

DRAM, SRAM through one memory controller.

Index Terms— Universal Memory Controller, low power Memory

Controller, Flash, DRAM, UVM, eMMC, ONFI, One-NAND, UFS,

HMC, WideIO, SSD, Verification Environment.

I. INTRODUCTION

 The main aim of the memory controllers is to provide the

most suitable interface and protocol between the host and the

memories to efficiently handle data, maximizing transfer

speed, data integrity and information retention. To improve

this communication as a solution for the memory bottleneck,

the memory cores and memory controllers can be improved.

The most famous existing memory controllers–based solution

is to improve the controller architectures and scheduling

algorithms. Part of the idea behind the solution is to unload

low-level memory management from the host processor,

freeing up resources. The proposed memory controller

optimizes the features of the existing memory controllers on

the scene and integrates them in only one generic universal

memory controller. This generic universal memory controller

can replace the existing memory controllers due to its

powerful specifications which can be summarized in these

points: (i) Two dominated types of memory: FLASH and

DRAM and SRAM are supported. (ii) All the most major,

powerful and important features for any existing memory

controller are supported and designed to be optionally enabled

or disabled according to the manufacturer desire. (iii) High

control of power consumption due to different power levels

supported to fit all power scenarios.

Fig.1 Memory Controller architecture

 This generic universal Memory Controller core supports

a variety of memory devices, flexible timing and predefined

system startup from a Flash or ROM memory.

Microprocessors communicate with memory cores through

memory controllers.

Some of the main features are:

1. SDRAM, SSRAM, FLASH, ROM and many other devices

supported. 2. 8 Chip selects, each uniquely programmable. 3.

Flexible timing to accommodate a variety of memory devices.

4. Burst transfers and burst termination. 5. Supports RMW

cycles. 6. Performance optimization by leaving active rows

open. 7. Default boot sequence support. 8. Dynamic bus sizing

for reading from Async. Devices. 9. Byte parity Generation

and Checking. 10. Multi Master memory bus support. 11.

Industry standard WISHBONE SOC host interface. 12. Up to

8 * 64 Mbyte memory size. 13. Supports Power Down Mode.

 Our key contribution in this paper is to provide some

implementation and verification details which are used in

creating this universal memory controller by using sv. The rest

of paper is organized as follows. In Section II, some of the

implementation details are presented. In section III, the

architecture of the SV verification environment is provided.

Results are discussed in section IV. Conclusions are in section

V.

II. SOME OF THE IMPLEMENTATION DETAILS ARE PRESENT

These specifications covered the most important types of
memories are FLASH and DRAM and SRAM in one device.
This architecture has extremely simple design which can
utilize many applications.

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2664

Some of the different memory controllers are present

DRAM CONTROLLER:-

Dynamic random-access memory (DRAM) is a type of
random-access memory that stores each bit of data in a
separate capacitor within an integrated circuit.

Double data rate (DDR) memory controllers are used to drive
DDR SDRAM, where data is transferred on both rising and
falling edges of the system's memory clock. DDR memory
controllers are significantly more complicated when compared
to single data rate controllers, but they allow for twice the data
to be transferred without increasing the memory cell's clock
rate or bus width. Slower in access, charge leakage are the
disadvantages among which lower cost is the advantage.

FLASH CONTROLLER:-

 It manages the data stored on flash memory and
communicates with a computer or electronic device. Flash
memory controllers can be designed for operating in low duty-
cycle environments like SD cards, Compact Flash cards, or
other similar media for use in digital cameras, PDAs, mobile
phones, etc. Flash controllers can also be designed for higher
duty-cycle environments like solid-state drives (SSD) used as
data storage for laptop computer systems clear up to mission-
critical enterprise storage arrays.

SRAM CONTROLLER:-

 A memory controller is usually used to shield the
synchronous system from SRAM. It is responsible for
generating the properly timed signals and making the SRAM
look ’synchronous’. Its performance is measured by the
number of memory accesses that can be completed in a given
time period. Designing a memory controller that is optimal is
non-trivial.

The host can handle the power consumption efficiently.
Through a comparative study of these protocols, an important
key result is reached, although that the industry always
looking forward to improving the performance

 The main objective is to reduce the consumed power by
the device. Thus the major objective also of this common
architecture is to conserve the energy. The interface between
the host processor and the proposed universal memory
controller consists of six buses which enable the host to
send/receive to/from the memory controller serially . The host
processor can also select the desired memory core (FLASH or
DRAM or SRAM) through the memory core select signal.

 This universal memory controller proposes six different
partitions which are boot, enhanced, system code, high speed,
temporary and the user data area partition to benefit from the
permanent storage of the controlled memory.

Fig.2 The proposed interface of the universal memory
controller.

Therefore this Universal Memory Controller core supports a
variety of memory devices like FLASH, DRAM, SRAM,
SYNC CHIP SELECT..

Fig.3 The Proposed power levels of the Universal Memory
Controller are stand-by, active, power-down, sleep, hibernate
and deep power down

The interface between the host processor and the proposed
universal memory controller consists of six buses which
enable the host to send/receive to/from the memory controller
serially as shown in Fig.2. The host processor can also select
the desired memory core (FLASH or DRAM) through the
memory core select signal

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2665

III. THE ARCHITECTURE OF THE SV VERIFICATION

ENVIRONMENT

Fig.4 The Proposed Architecture of the SV verification
environment for Generic Universal Memory Controller

BUILDING BLOCKS OF THE SV TESTBENCH
ARCHITECTURE:

Transactions: All the inputs and outputs of the Design Under
Verification (DUV) are written inside the transaction class,
excluding the clock and reset signals that are generated in the
top module. The transaction class can optionally have
constraints for the inputs.

Generator: This is a component of the testbench which
generates constrained random stimuli (transactions) for the
DUV. The generator sends the generated stimuli to the driver
through a mailbox. Its code is written inside a class.

Driver : This is a component which converts transactions into
pin-level activity at the inputs of the DUV. It receives the
generated transactions from the generator through a mailbox
and drives it to the DUV through a virtual interface according
to the DUV protocol. It also sends the received transactions
from the generator to the reference model (described later)
through another mailbox. Its code is written inside a class.

Monitor : This is a component which converts pin-level
activity into transactions at the outputs of the DUV. It collects
the outputs of the DUV through a virtual interface and sends it
to the scoreboard through a mailbox. Its code is written inside
a class.

Reference Model : This is a ‘golden’ model that mimics the
functionality of the DUV and generates reference results used
for comparison against simulation results.

Scoreboard: This is the component that collects the
transactions (expected results) from the reference model
through a mailbox.

 It collects the transactions (actual results) from
the monitor through another mailbox.

 It compares the expected transactions with the
actual transactions and generates a report.

 Its code is written inside a class

Environment : This is the component of the testbench which
instantiates the generator, driver, monitor, reference model
and scoreboard

 Here, the various sub-components are built and
properly connected.

 Its code is written inside a class.

Test : This is the component where different test cases are
written and run. Here the environment is instantiated and built.
Its code is written inside a class.

Top : This is the top most module of the SV testbench
architecture where control signals like clock and reset are
generated. Its code is written inside a module and the
interface, the DUV and the test are instantiated in it.

IV. MEMORY CONTROLLER FUNCTIONAL VERIFICATION

The Verification of Memory Controller is done as below.

 Initially the memory controller specification is read
and features are extracted from it.

 The verification plan document is then developed
with the information containing the feature based
testcases like registers Read/Write, performance
based testcases, interrupt testcases, low power
testcases etc.

 Architecture components that fits to verify. Coverage
to be covered, assertions for protocol verification.
Scoreboard and checker information, interfaces,
configuration parameters etc.

 The testbench and it’s components is developed using
System verilog and different testcases are written.

 The different stimulus is generated using randomized
based sequences and configuration settings and given
to the DUT through interface bus.

 The input and output from DUT is monitored and
comparison is done

 In the scoreboard for input data and expected output
data from DUT.

 The coverage report is analyzed and more number of
randomized and direct testcases is written to achieve

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2666

the 100% code and functional coverage which is the
main criteria for the verification completion.

QUESTASIM TOOL:-

 QuestaSim is part of the Questa Advanced Functional
Verification Platform and is the latest tool in Mentor Graphics
tool suite for Functional Verification. The tool provides
simulation support for latest standards of SystemC,
SystemVerilog, Verilog 2001 standard and VHDL. This tool is
an advancement over Modelsim in its support for advanced
Verification features like coverage databases, coverage driven
verification, working with assertions, SystemVerilog
constrained-random functionality.

V. RESULTS

The implementation and verification of a universal memory

controller is done using system verilog. Waveform showing

the writing data to particular address location in the burst

transaction and same data is read from the written address

location. And both data should be same. This type read and

writes sequences are done for the SRAM, FLASH memories

to verify it.

Fig 6 Waveforms of the interesting signals of the proposed

interface

 Though the tests plan, more than 200 coverage points

have been covered. Since all the signals are statistically

available, the interesting data sings of universal memory

controller are added to the wave viewer and looking at their

values over time while the simulation is running as shown in

Fig6.

 The wr_rd represents the read and write data where if

wr_rd is 1 then it represents write the data and if 0 , it

represent read data. In the below analysis the data is written at

particular address location of memory.

 This below analysis shows that whatever the data written

in particular address is same at the reading the data at same

addresses. This represents the complete verification of a

universal memory controller using system verilog.

Fig 7 write data analysis

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2667

Fig 8 Read data analysis

VI. CONCLUSION

This paper proposed an implementation of a system level
architecture of a GENERIC UNIVERSAL MEMORY
CONTROLLER verified by using SYSTEM VERILOG . It
supports both FLASH and DRAM memory types to be
controlled.

It also grants to the host processor the ability of high
power consumption control due to its proposed different
power levels supported to fit all power scenarios, so the
controller is keeping up with the global trend to save more
power and reduce its impact on the performance.

Memory controller improves the memory access efficiency in
applications requiring small burst and random addressing
accesses such as image processing and networking.

VII. REFERENCE

 El-Ashry, S., memory controller architecture

 K Khalifa, H Fawzy Computer, Telecommunications

and CON), 2014 11th…

 Systemverilog 1800-2012 IEEE Standard for System

Verilog-Unified Hardware Design, Specification, and

Verification Language

 http://www.verilog.net/

 http://www.asic-world.com/verilog/veritut.html.

.

