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Abstract—Duplicate detection is the 

process of identifying multiple 

representations of same real world entities. 

Today, duplicate detection methods need to 

process ever larger datasets in ever shorter 

time: maintaining the quality of a dataset 

becomes increasingly difficult. We present 

two novel, progressive duplicate detection 

algorithms that significantly increase the 

efficiency of finding duplicates if the 

execution time is limited: They maximize 

the gain of the overall process within the 

time available by reporting most results 

much earlier than traditional approaches. 

Comprehensive experiments show that our 

progressive algorithms can double the 

efficiency over time of traditional duplicate 
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detection and significantly improve upon 

related work. 

 

1 INTRODUCTION 

DATA are among the most important assets 

of a company. But due to data changes and 

sloppy data entry, errors such as duplicate 

entries might occur, making data cleansing 

and in particular duplicate detection 

indispensable.However, the pure size of 

today’s datasets render duplicate detection 

processes expensive. Online retailers, for 

example, offer huge catalogs comprising a 

constantly growing set of items from many 

different suppliers. As independent persons 

change the product portfolio, duplicates 

arise. Although there is an obvious need for 

deduplication, online shops without 

downtime cannot afford traditional 

deduplication. Progressive duplicate 

detection identifies most duplicate pairs 

early in the detection process. Instead of 

reducing the overall time needed to finish 

the entire process, progressive approaches 

try to reduce the average time after which a 

duplicate is found. Early termination, in 

particular, then yields more complete results 

on a progressive algorithm than on any 

traditional approach. duplicates found by 

three different duplicate detection 

algorithms in relation to their processing 

time: The incremental algorithm reports new 

duplicates at an almost constant frequency. 

This output behavior is common for state-of-

the-art duplicate detection algorithms. In this 

work, however, we focus on progressive 

algorithms, which try to report most matches 

early on, while possibly slightly increasing 

their overall runtime. To achieve this, they 

need to estimate the similarity of all 

comparison candidates in order to compare 

most promising record pairs first. With the 

pair selection techniques of the duplicate 

detection process, there exists a trade-off 

between the amount of time needed to run a 

duplicate detection algorithm and the 

completeness of the results. Progressive 

techniques make this trade-off more 

beneficial as they deliver more complete 

results in shorter amounts of time. 

Furthermore, they make it easier for the user 

to define this trade-off, because the 

detection time or result size can directly be 

specified instead of parameters whose 

influence on detection time and result size is 

hard to guess. We present several use cases 

where this becomes important: 

1) A user has only limited, maybe unknown 

time for data cleansing and wants to make 

best possible use of it. Then, simply start the 

algorithm and terminate it when needed. The 

result size will be maximized. 

2) A user has little knowledge about the 

given data but still needs to configure the 
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cleansing process. Then, let the progressive 

algorithm choose window/block sizes and 

keys automatically. 

3) A user needs to do the cleaning 

interactively to, for instance, find good 

sorting keys by trial and error. Then, run the 

progressive algorithm repeatedly; each run 

quickly reports possibly large results. 

4) A user has to achieve a certain recall. 

Then, use the result curves of progressive 

algorithms to estimate how many more 

duplicates can be found further; in general, 

the curves asymptotically converge against 

the real number of duplicates in the dataset. 

We propose two novel, progressive 

duplicate detection algorithms namely 

progressive sorted neighborhood method 

(PSNM), which performs best on small and 

almost clean datasets, and progressive 

blocking (PB), which performs best on large 

and very dirty datasets. Both enhance the 

efficiency of duplicate detection even on 

very large datasets. In comparison to 

traditional duplicate detection, progressive 

duplicate detection satisfies two conditions  

II RELATED WORK 

Much research on duplicate detection [2], 

[3], also known as entity resolution and by 

many other names, focuses on pairs election 

algorithms that try to maximize recall on the 

one hand and efficiency on the other hand. 

The most prominent algorithms in this area 

are Blocking [4] and the sorted 

neighborhood method (SNM) [5]. Adaptive 

techniques. Previous publications on 

duplicate detection often focus on reducing 

the overall runtime. Thereby, some of the 

proposed algorithms are already capable of 

estimating the quality of comparison 

candidates [6], [7], [8]. The algorithms use 

this information to choose the comparison 

candidates more carefully. For the same 

reason, other approaches utilize adaptive 

windowing techniques, which dynamically 

adjust the window size depending on the 

amount of recently found duplicates [9], 

[10]. These adaptive techniques dynamically 

improve the efficiency of duplicate 

detection, but in contrast to our progressive 

techniques, they need to run for certain 

periods of time and cannot maximize the 

efficiency for any given time slot. 

Progressive techniques. In the last few years, 

the economic need for progressive 

algorithms also initiated some concrete 

studies in this domain. For instance, pay-as-

you-go algorithms for information 

integration on large scale datasets have been 

presented [11]. Other works introduced 

progressive data cleansing algorithms for the 

analysis of sensor data streams [12]. 

However, these approaches cannot be 

applied to duplicate detection. Xiao et al. 

proposed a top-k similarity join that uses a 
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special index structure to estimate promising 

comparison candidates [13]. This approach 

progressively resolves duplicates and also 

eases the parameterization problem. 

Although the result of this approach is 

similar to our approaches (a list of 

duplicates almost ordered by similarity), the 

focus differs: Xiao et al. find the top-k most 

similar duplicates regardless of how long 

this takes by weakening the similarity 

threshold; we find as many duplicates as 

possible in a given time. That these 

duplicates are also the most similar ones is a 

side effect of our approaches. Pay-As-You-

Go Entity Resolution by Whang et al. 

introduced three kinds of progressive 

duplicate detection techniques, called 

―hints‖ [1]. A hint defines a probably good 

execution order for the comparisons in order 

to match promising record pairs earlier than 

less promising record pairs. However, all 

presented hints produce static orders for the 

comparisons and miss the opportunity to 

dynamically adjust the comparison order at 

runtime based on intermediate results. Some 

of our techniques directly address this issue. 

Furthermore, the presented duplicate 

detection approaches calculate a hint only 

for a specific partition, which is a (possibly 

large) subset of records that fits into main 

memory. By completing one partition of a 

large dataset after another, the overall 

duplicate detection process is no longer 

progressive. This issue is only partly 

addressed in [1], which proposes to calculate 

the hints using all partitions.  

3 PROGRESSIVE SNM 

The progressive sorted neighborhood 

method is based on the traditional sorted 

neighborhood method [5]: PSNM sorts the 

input data using a predefined sorting key 

and only compares records that are within a 

window of records in the sorted order. The 

intuition is that records that are close in the 

sorted order are more likely to be duplicates 

than records that are far apart, because they 

are already similar with respect to their 

sorting key. More specifically, the distance 

of two records in their sort ranks (rank-

distance) gives PSNM an estimate of their 

matching likelihood. The PSNM algorithm 

uses this intuition to iteratively vary the 

window size, starting with a small window 

of size two that quickly finds the most 

promising records. This static approach has 

already been proposed as the sorted list of 

record pairs (SLRPs) hint [1]. The PSNM 

algorithm differs by dynamically changing 

the execution order of the comparisons 

based on intermediate results (Look-Ahead). 

Furthermore, PSNM integrates a progressive 

sorting phase (MagpieSort) 

and can progressively process significantly 

larger datasets. 



 

 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 04 Issue 14 

November 2017 

   

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 1004   

 PSNM Algorithm 

Algorithm 1 depicts our implementation of 

PSNM. The algorithmtakes five input 

parameters: D is a reference to the data, 

which has not been loaded from disk yet. 

The sorting key K defines the attribute or 

attribute combination that should be used in 

the sorting step. W specifies the maximum 

window size, which corresponds to the 

window size of the traditional sorted 

neighborhood method. When using early 

termination, this parameter can be set to an 

optimistically high default value. Parameter 

I defines the enlargement interval for the 

progressive iterations. Section 3.2 describes 

this parameter in more detail. For now, 

assume it has the default value 1. The last 

parameter N specifies the number of records 

in the dataset. This number can be gleaned 

in the sorting step, butwe list it as a 

parameter for presentation purposes. 

Algorithm 1. Progressive Sorted 

Neighborhood 

Require: dataset reference D, sorting key K, 

window size 

W, enlargement interval size I, number of 

records N 

1: procedure PSNM(D, K, W, I, N) 

2: pSize calcPartitionSize(D) 

3: pNum dN=ðpSize _W þ 1Þe 

4: array order size N as Integer 

5: array recs size pSize as Record 

6: order sortProgressive(D, K, I, pSize, 

pNum) 

7: for currentI 2 to dW=I e do 

8: for currentP 1 to pNum do 

9: recs loadPartition(D, currentP) 

10: for dist 2 range(currentI, I, W) do 

11: for i 0 to jrecsj _ dist do 

12: pair hrecs½i_; recs½i þ dist_i 

13: if compare(pair) then 

14: emit(pair) 

15: lookAhead(pair) 

In many practical scenarios, the entire 

dataset will not fit in main memory. To 

address this, PSNM operates on a partition 

of the dataset at a time.  

IV PROGRESSIVE BLOCKING 

In contrast to windowing algorithms, 

blocking algorithms assign each record to a 

fixed group of similar records (the blocks) 

and then compare all pairs of records within 

these groups. Progressive blocking is a 

novel approach that builds upon an 

equidistant blocking technique and the 

successive enlargement of blocks. Like 

PSNM, it also presorts the records to use 

their rank-distance in this sorting  for 

similarity estimation. Based on the sorting, 

PB first creates and then progressively 

extends a fine-grained blocking. These block 

extensions are specifically executed on 

neighborhoods around already identified 

duplicates, which enables PB to expose 
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clusters earlier than PSNM  using the block 

comparison matrix. To create this matrix, a 

preprocessing step has already sorted the 

records that form the Blocks 1-8 (depicted 

as vertical and horizontal axes). Each block 

within the block comparison matrix 

represents the comparisons of all records in 

one block with all records in another block. 

For instance, the field in the 4th row and the 

5th column represents the comparisons of all 

records in Block 4 with all records in Block 

5. Assuming a symmetric similarity 

measure, we can ignore the bottom left part 

of the matrix. The exemplary number of 

found duplicates is depicted in the according 

fields. In this example, the block comparison  

Algorithm 2. Progressive Blocking 

Require: dataset reference D, key attribute 

K, maximum 

block range R, block size S and record 

number N 

1: procedure PB(D, K, R, S, N) 

2: pSize calcPartitionSize(D) 

3: bPerP bpSize=Sc 

4: bNum dN=Se 

5: pNum dbNum=bPerPe 

6: array order size N as Integer 

7: array blocks size bPerP as 

hInteger;Record½ _i 

8: priority queue bPairs as hInteger; Integer; 

Integeri 

9: bPairs fh1; 1; i; . . . ;hbNum; bNum; ig 

10: order sortProgressive(D, K, S, bPerP, 

bPairs) 

11: for i 0 to pNum _ 1 do 

12: pBPs get(bPairs, i _ bPerP, (i þ 1) _ 

bPerP) 

13: blocks loadBlocks(pBPs, S, order) 

14: compare(blocks, pBPs, order) 

15: while bPairs is not empty do 

16: pBPs fg 

17: bestBPs takeBest(bbPerP=4c, bPairs, R) 

18: for bestBP 2 bestBPs do 

19: if bestBP[1] _ bestBP[0] < R then 

20: pBPs pBPs [ extend(bestBP) 

21: blocks loadBlocks(pBPs, S, order) 

22: compare(blocks, pBPs, order) 

23: bPairs bPairs [ pBPs 

24: procedure compare(blocks, pBPs, order) 

25: for pBP 2 pBPs do 

26: hdPairs;cNumi comp(pBP, blocks, 

order) 

27: emit(dPairs) 

28: pBP[2] jdPairsj / cNum 

At first, PB calculates the number of records 

per partition pSize by using a pessimistic 

sampling function in Line 2. The algorithm 

also calculates the number of loadable 

blocks per partition bPerP, the total number 

of blocks bNum, and the total number of 

partitions pNum. In the Lines 6 to 8, PB 

then defines the three main data structures: 

the order-array, which stores the ordered list 

of record IDs, the blocks-array, which holds 
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the current partition of blocked records, and 

the bPairs-list, which stores all recently 

evaluated block pairs.  

V CONCLUSION  

This paper introduced the progressive sorted 

neighborhood method and progressive 

blocking. Both algorithms increase the 

efficiency of duplicate detection for 

situations with limited execution time; they 

dynamically change the ranking of 

comparison candidates based on 

intermediate results to execute promising 

comparisons first and less promising 

comparisons later. To determine the 

performance gain of our algorithms, we 

proposed a novel quality measure for 

progressiveness that integrates seamlessly 

with existing measures. Using this measure, 

experiments showed that our approaches 

outperform the traditional SNM by up to 

100 percent and related work by up to 30 

percent. 

REFERENCES 

[1] S. E. Whang, D. Marmaros, and H. 

Garcia-Molina, ―Pay-as-you-go entity 

resolution,‖ IEEE Trans. Knowl. Data Eng., 

vol. 25, no. 5, pp. 1111–1124, May 2012. 

[2] A. K. Elmagarmid, P. G. Ipeirotis, and 

V. S. Verykios, ―Duplicate record detection: 

A survey,‖ IEEE Trans. Knowl. Data Eng., 

vol. 19, no. 1, pp. 1–16, Jan. 2007. 

[3] F. Naumann and M. Herschel, An 

Introduction to Duplicate Detection. San 

Rafael, CA, USA: Morgan & Claypool, 

2010. 

[4] H. B. Newcombe and J. M. Kennedy, 

―Record linkage: Making maximum use of 

the discriminating power of identifying 

information,‖ Commun. ACM, vol. 5, no. 

11, pp. 563–566, 1962. 

[5] M. A. Hern_andez and S. J. Stolfo, 

―Real-world data is dirty: Data cleansing 

and the merge/purge problem,‖ Data Mining 

Knowl. Discovery, vol. 2, no. 1, pp. 9–37, 

1998. 

[6] X. Dong, A. Halevy, and J. Madhavan, 

―Reference reconciliation in complex 

information spaces,‖ in Proc. Int. Conf. 

Manage. Data, 2005, pp. 85–96. 

[7] O. Hassanzadeh, F. Chiang, H. C. Lee, 

and R. J. Miller, ―Framework for evaluating 

clustering algorithms in duplicate 

detection,‖ Proc. Very Large Databases 

Endowment, vol. 2, pp. 1282–= 1293, 2009. 

[8] O. Hassanzadeh and R. J. Miller, 

―Creating probabilistic databases from 

duplicated data,‖ VLDB J., vol. 18, no. 5, 

pp. 1141–1166, 2009. 

[9] U. Draisbach, F. Naumann, S. Szott, and 

O. Wonneberg, ―Adaptive windows for 

duplicate detection,‖ in Proc. IEEE 28
th

 Int. 

Conf. Data Eng., 2012, pp. 1073–1083. 



 

 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 04 Issue 14 

November 2017 

   

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 1007   

[10] S. Yan, D. Lee, M.-Y. Kan, and L. C. 

Giles, ―Adaptive sorted neighborhood 

methods for efficient record linkage,‖ in 

Proc. 7th ACM/ IEEE Joint Int. Conf. Digit. 

Libraries, 2007, pp. 185–194. 

[11] J. Madhavan, S. R. Jeffery, S. Cohen, 

X. Dong, D. Ko, C. Yu, and A. Halevy, 

―Web-scale data integration: You can only 

afford to pay as you go,‖ in Proc. Conf. 

Innovative Data Syst. 

Res., 2007. 

[12] S. R. Jeffery, M. J. Franklin, and A. Y. 

Halevy, ―Pay-as-you-go user feedback for 

dataspace systems,‖ in Proc. Int. Conf. 

Manage. Data, 2008, pp. 847–860. 

[13] C. Xiao, W. Wang, X. Lin, and H. 

Shang, ―Top-k set similarity joins,‖ in Proc. 

IEEE Int. Conf. Data Eng., 2009, pp. 916–

927. 

[14] P. Indyk, ―A small approximately min-

wise independent family of hash functions,‖ 

in Proc. 10th Annu. ACM-SIAM Symp. 

Discrete Algorithms, 1999, pp. 454–456. 

[15] U. Draisbach and F. Naumann, ―A 

generalization of blocking and windowing 

algorithms for duplicate detection,‖ in Proc. 

Int. Conf. Data Knowl. Eng., 2011, pp. 18–

24. 

[16] H. S. Warren, Jr., ―A modification of 

Warshall’s algorithm for the transitive 

closure of binary relations,‖ Commun. 

ACM, vol. 18, no. 4, pp. 218–220, 1975. 

[17] M. Wallace and S. Kollias, 

―Computationally efficient incremental 

transitive closure of sparse fuzzy binary 

relations,‖ in Proc. IEEE 

Int. Conf. Fuzzy Syst., 2004, pp. 1561–

1565. 

[18] F. J. Damerau, ―A technique for 

computer detection and correction of 

spelling errors,‖ Commun. ACM, vol. 7, no. 

3, pp. 171–176, 1964. 

[19] P. Christen, ―A survey of indexing 

techniques for scalable record linkage and 

deduplication,‖ IEEE Trans. Knowl. Data 

Eng., vol. 24, no. 9, pp. 1537–1555, Sep. 

2012. 

[20] B. Kille, F. Hopfgartner, T. Brodt, and 

T. Heintz, ―The Plista dataset,‖ in Proc. Int. 

Workshop Challenge News Recommender 

Syst., 2013, pp. 16–23. 

 

 

 

 

 

 

 

 


