

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1000

Duplicate Detection by Progressive Sorted Neighbor

Method

1.NEDUNOORI.SANDHYA DEVI

1.PG Scholar, Department of CSE,Vaagdevi College of Engineering,Autonomous,

Bollikunta,Warangal Telangana,Mail.id:nedunoori.sandhya@gmail.com

2.K.GOUTHAM RAJU

2.Associate Professor Department of CSE,Vaagdevi College ofEngineering,Autonomous

Bollikunta,Warangal Telangana

Mail.Id:gouthamraj.kodam@gmail.com

Abstract—Duplicate detection is the

process of identifying multiple

representations of same real world entities.

Today, duplicate detection methods need to

process ever larger datasets in ever shorter

time: maintaining the quality of a dataset

becomes increasingly difficult. We present

two novel, progressive duplicate detection

algorithms that significantly increase the

efficiency of finding duplicates if the

execution time is limited: They maximize

the gain of the overall process within the

time available by reporting most results

much earlier than traditional approaches.

Comprehensive experiments show that our

progressive algorithms can double the

efficiency over time of traditional duplicate

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1001

detection and significantly improve upon

related work.

1 INTRODUCTION

DATA are among the most important assets

of a company. But due to data changes and

sloppy data entry, errors such as duplicate

entries might occur, making data cleansing

and in particular duplicate detection

indispensable.However, the pure size of

today’s datasets render duplicate detection

processes expensive. Online retailers, for

example, offer huge catalogs comprising a

constantly growing set of items from many

different suppliers. As independent persons

change the product portfolio, duplicates

arise. Although there is an obvious need for

deduplication, online shops without

downtime cannot afford traditional

deduplication. Progressive duplicate

detection identifies most duplicate pairs

early in the detection process. Instead of

reducing the overall time needed to finish

the entire process, progressive approaches

try to reduce the average time after which a

duplicate is found. Early termination, in

particular, then yields more complete results

on a progressive algorithm than on any

traditional approach. duplicates found by

three different duplicate detection

algorithms in relation to their processing

time: The incremental algorithm reports new

duplicates at an almost constant frequency.

This output behavior is common for state-of-

the-art duplicate detection algorithms. In this

work, however, we focus on progressive

algorithms, which try to report most matches

early on, while possibly slightly increasing

their overall runtime. To achieve this, they

need to estimate the similarity of all

comparison candidates in order to compare

most promising record pairs first. With the

pair selection techniques of the duplicate

detection process, there exists a trade-off

between the amount of time needed to run a

duplicate detection algorithm and the

completeness of the results. Progressive

techniques make this trade-off more

beneficial as they deliver more complete

results in shorter amounts of time.

Furthermore, they make it easier for the user

to define this trade-off, because the

detection time or result size can directly be

specified instead of parameters whose

influence on detection time and result size is

hard to guess. We present several use cases

where this becomes important:

1) A user has only limited, maybe unknown

time for data cleansing and wants to make

best possible use of it. Then, simply start the

algorithm and terminate it when needed. The

result size will be maximized.

2) A user has little knowledge about the

given data but still needs to configure the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1002

cleansing process. Then, let the progressive

algorithm choose window/block sizes and

keys automatically.

3) A user needs to do the cleaning

interactively to, for instance, find good

sorting keys by trial and error. Then, run the

progressive algorithm repeatedly; each run

quickly reports possibly large results.

4) A user has to achieve a certain recall.

Then, use the result curves of progressive

algorithms to estimate how many more

duplicates can be found further; in general,

the curves asymptotically converge against

the real number of duplicates in the dataset.

We propose two novel, progressive

duplicate detection algorithms namely

progressive sorted neighborhood method

(PSNM), which performs best on small and

almost clean datasets, and progressive

blocking (PB), which performs best on large

and very dirty datasets. Both enhance the

efficiency of duplicate detection even on

very large datasets. In comparison to

traditional duplicate detection, progressive

duplicate detection satisfies two conditions

II RELATED WORK

Much research on duplicate detection [2],

[3], also known as entity resolution and by

many other names, focuses on pairs election

algorithms that try to maximize recall on the

one hand and efficiency on the other hand.

The most prominent algorithms in this area

are Blocking [4] and the sorted

neighborhood method (SNM) [5]. Adaptive

techniques. Previous publications on

duplicate detection often focus on reducing

the overall runtime. Thereby, some of the

proposed algorithms are already capable of

estimating the quality of comparison

candidates [6], [7], [8]. The algorithms use

this information to choose the comparison

candidates more carefully. For the same

reason, other approaches utilize adaptive

windowing techniques, which dynamically

adjust the window size depending on the

amount of recently found duplicates [9],

[10]. These adaptive techniques dynamically

improve the efficiency of duplicate

detection, but in contrast to our progressive

techniques, they need to run for certain

periods of time and cannot maximize the

efficiency for any given time slot.

Progressive techniques. In the last few years,

the economic need for progressive

algorithms also initiated some concrete

studies in this domain. For instance, pay-as-

you-go algorithms for information

integration on large scale datasets have been

presented [11]. Other works introduced

progressive data cleansing algorithms for the

analysis of sensor data streams [12].

However, these approaches cannot be

applied to duplicate detection. Xiao et al.

proposed a top-k similarity join that uses a

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1003

special index structure to estimate promising

comparison candidates [13]. This approach

progressively resolves duplicates and also

eases the parameterization problem.

Although the result of this approach is

similar to our approaches (a list of

duplicates almost ordered by similarity), the

focus differs: Xiao et al. find the top-k most

similar duplicates regardless of how long

this takes by weakening the similarity

threshold; we find as many duplicates as

possible in a given time. That these

duplicates are also the most similar ones is a

side effect of our approaches. Pay-As-You-

Go Entity Resolution by Whang et al.

introduced three kinds of progressive

duplicate detection techniques, called

―hints‖ [1]. A hint defines a probably good

execution order for the comparisons in order

to match promising record pairs earlier than

less promising record pairs. However, all

presented hints produce static orders for the

comparisons and miss the opportunity to

dynamically adjust the comparison order at

runtime based on intermediate results. Some

of our techniques directly address this issue.

Furthermore, the presented duplicate

detection approaches calculate a hint only

for a specific partition, which is a (possibly

large) subset of records that fits into main

memory. By completing one partition of a

large dataset after another, the overall

duplicate detection process is no longer

progressive. This issue is only partly

addressed in [1], which proposes to calculate

the hints using all partitions.

3 PROGRESSIVE SNM

The progressive sorted neighborhood

method is based on the traditional sorted

neighborhood method [5]: PSNM sorts the

input data using a predefined sorting key

and only compares records that are within a

window of records in the sorted order. The

intuition is that records that are close in the

sorted order are more likely to be duplicates

than records that are far apart, because they

are already similar with respect to their

sorting key. More specifically, the distance

of two records in their sort ranks (rank-

distance) gives PSNM an estimate of their

matching likelihood. The PSNM algorithm

uses this intuition to iteratively vary the

window size, starting with a small window

of size two that quickly finds the most

promising records. This static approach has

already been proposed as the sorted list of

record pairs (SLRPs) hint [1]. The PSNM

algorithm differs by dynamically changing

the execution order of the comparisons

based on intermediate results (Look-Ahead).

Furthermore, PSNM integrates a progressive

sorting phase (MagpieSort)

and can progressively process significantly

larger datasets.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1004

 PSNM Algorithm

Algorithm 1 depicts our implementation of

PSNM. The algorithmtakes five input

parameters: D is a reference to the data,

which has not been loaded from disk yet.

The sorting key K defines the attribute or

attribute combination that should be used in

the sorting step. W specifies the maximum

window size, which corresponds to the

window size of the traditional sorted

neighborhood method. When using early

termination, this parameter can be set to an

optimistically high default value. Parameter

I defines the enlargement interval for the

progressive iterations. Section 3.2 describes

this parameter in more detail. For now,

assume it has the default value 1. The last

parameter N specifies the number of records

in the dataset. This number can be gleaned

in the sorting step, butwe list it as a

parameter for presentation purposes.

Algorithm 1. Progressive Sorted

Neighborhood

Require: dataset reference D, sorting key K,

window size

W, enlargement interval size I, number of

records N

1: procedure PSNM(D, K, W, I, N)

2: pSize calcPartitionSize(D)

3: pNum dN=ðpSize _W þ 1Þe

4: array order size N as Integer

5: array recs size pSize as Record

6: order sortProgressive(D, K, I, pSize,

pNum)

7: for currentI 2 to dW=I e do

8: for currentP 1 to pNum do

9: recs loadPartition(D, currentP)

10: for dist 2 range(currentI, I, W) do

11: for i 0 to jrecsj _ dist do

12: pair hrecs½i_; recs½i þ dist_i

13: if compare(pair) then

14: emit(pair)

15: lookAhead(pair)

In many practical scenarios, the entire

dataset will not fit in main memory. To

address this, PSNM operates on a partition

of the dataset at a time.

IV PROGRESSIVE BLOCKING

In contrast to windowing algorithms,

blocking algorithms assign each record to a

fixed group of similar records (the blocks)

and then compare all pairs of records within

these groups. Progressive blocking is a

novel approach that builds upon an

equidistant blocking technique and the

successive enlargement of blocks. Like

PSNM, it also presorts the records to use

their rank-distance in this sorting for

similarity estimation. Based on the sorting,

PB first creates and then progressively

extends a fine-grained blocking. These block

extensions are specifically executed on

neighborhoods around already identified

duplicates, which enables PB to expose

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1005

clusters earlier than PSNM using the block

comparison matrix. To create this matrix, a

preprocessing step has already sorted the

records that form the Blocks 1-8 (depicted

as vertical and horizontal axes). Each block

within the block comparison matrix

represents the comparisons of all records in

one block with all records in another block.

For instance, the field in the 4th row and the

5th column represents the comparisons of all

records in Block 4 with all records in Block

5. Assuming a symmetric similarity

measure, we can ignore the bottom left part

of the matrix. The exemplary number of

found duplicates is depicted in the according

fields. In this example, the block comparison

Algorithm 2. Progressive Blocking

Require: dataset reference D, key attribute

K, maximum

block range R, block size S and record

number N

1: procedure PB(D, K, R, S, N)

2: pSize calcPartitionSize(D)

3: bPerP bpSize=Sc

4: bNum dN=Se

5: pNum dbNum=bPerPe

6: array order size N as Integer

7: array blocks size bPerP as

hInteger;Record½ _i

8: priority queue bPairs as hInteger; Integer;

Integeri

9: bPairs fh1; 1; i; . . . ;hbNum; bNum; ig

10: order sortProgressive(D, K, S, bPerP,

bPairs)

11: for i 0 to pNum _ 1 do

12: pBPs get(bPairs, i _ bPerP, (i þ 1) _

bPerP)

13: blocks loadBlocks(pBPs, S, order)

14: compare(blocks, pBPs, order)

15: while bPairs is not empty do

16: pBPs fg

17: bestBPs takeBest(bbPerP=4c, bPairs, R)

18: for bestBP 2 bestBPs do

19: if bestBP[1] _ bestBP[0] < R then

20: pBPs pBPs [extend(bestBP)

21: blocks loadBlocks(pBPs, S, order)

22: compare(blocks, pBPs, order)

23: bPairs bPairs [pBPs

24: procedure compare(blocks, pBPs, order)

25: for pBP 2 pBPs do

26: hdPairs;cNumi comp(pBP, blocks,

order)

27: emit(dPairs)

28: pBP[2] jdPairsj / cNum

At first, PB calculates the number of records

per partition pSize by using a pessimistic

sampling function in Line 2. The algorithm

also calculates the number of loadable

blocks per partition bPerP, the total number

of blocks bNum, and the total number of

partitions pNum. In the Lines 6 to 8, PB

then defines the three main data structures:

the order-array, which stores the ordered list

of record IDs, the blocks-array, which holds

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1006

the current partition of blocked records, and

the bPairs-list, which stores all recently

evaluated block pairs.

V CONCLUSION

This paper introduced the progressive sorted

neighborhood method and progressive

blocking. Both algorithms increase the

efficiency of duplicate detection for

situations with limited execution time; they

dynamically change the ranking of

comparison candidates based on

intermediate results to execute promising

comparisons first and less promising

comparisons later. To determine the

performance gain of our algorithms, we

proposed a novel quality measure for

progressiveness that integrates seamlessly

with existing measures. Using this measure,

experiments showed that our approaches

outperform the traditional SNM by up to

100 percent and related work by up to 30

percent.

REFERENCES

[1] S. E. Whang, D. Marmaros, and H.

Garcia-Molina, ―Pay-as-you-go entity

resolution,‖ IEEE Trans. Knowl. Data Eng.,

vol. 25, no. 5, pp. 1111–1124, May 2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and

V. S. Verykios, ―Duplicate record detection:

A survey,‖ IEEE Trans. Knowl. Data Eng.,

vol. 19, no. 1, pp. 1–16, Jan. 2007.

[3] F. Naumann and M. Herschel, An

Introduction to Duplicate Detection. San

Rafael, CA, USA: Morgan & Claypool,

2010.

[4] H. B. Newcombe and J. M. Kennedy,

―Record linkage: Making maximum use of

the discriminating power of identifying

information,‖ Commun. ACM, vol. 5, no.

11, pp. 563–566, 1962.

[5] M. A. Hern_andez and S. J. Stolfo,

―Real-world data is dirty: Data cleansing

and the merge/purge problem,‖ Data Mining

Knowl. Discovery, vol. 2, no. 1, pp. 9–37,

1998.

[6] X. Dong, A. Halevy, and J. Madhavan,

―Reference reconciliation in complex

information spaces,‖ in Proc. Int. Conf.

Manage. Data, 2005, pp. 85–96.

[7] O. Hassanzadeh, F. Chiang, H. C. Lee,

and R. J. Miller, ―Framework for evaluating

clustering algorithms in duplicate

detection,‖ Proc. Very Large Databases

Endowment, vol. 2, pp. 1282–= 1293, 2009.

[8] O. Hassanzadeh and R. J. Miller,

―Creating probabilistic databases from

duplicated data,‖ VLDB J., vol. 18, no. 5,

pp. 1141–1166, 2009.

[9] U. Draisbach, F. Naumann, S. Szott, and

O. Wonneberg, ―Adaptive windows for

duplicate detection,‖ in Proc. IEEE 28
th

 Int.

Conf. Data Eng., 2012, pp. 1073–1083.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1007

[10] S. Yan, D. Lee, M.-Y. Kan, and L. C.

Giles, ―Adaptive sorted neighborhood

methods for efficient record linkage,‖ in

Proc. 7th ACM/ IEEE Joint Int. Conf. Digit.

Libraries, 2007, pp. 185–194.

[11] J. Madhavan, S. R. Jeffery, S. Cohen,

X. Dong, D. Ko, C. Yu, and A. Halevy,

―Web-scale data integration: You can only

afford to pay as you go,‖ in Proc. Conf.

Innovative Data Syst.

Res., 2007.

[12] S. R. Jeffery, M. J. Franklin, and A. Y.

Halevy, ―Pay-as-you-go user feedback for

dataspace systems,‖ in Proc. Int. Conf.

Manage. Data, 2008, pp. 847–860.

[13] C. Xiao, W. Wang, X. Lin, and H.

Shang, ―Top-k set similarity joins,‖ in Proc.

IEEE Int. Conf. Data Eng., 2009, pp. 916–

927.

[14] P. Indyk, ―A small approximately min-

wise independent family of hash functions,‖

in Proc. 10th Annu. ACM-SIAM Symp.

Discrete Algorithms, 1999, pp. 454–456.

[15] U. Draisbach and F. Naumann, ―A

generalization of blocking and windowing

algorithms for duplicate detection,‖ in Proc.

Int. Conf. Data Knowl. Eng., 2011, pp. 18–

24.

[16] H. S. Warren, Jr., ―A modification of

Warshall’s algorithm for the transitive

closure of binary relations,‖ Commun.

ACM, vol. 18, no. 4, pp. 218–220, 1975.

[17] M. Wallace and S. Kollias,

―Computationally efficient incremental

transitive closure of sparse fuzzy binary

relations,‖ in Proc. IEEE

Int. Conf. Fuzzy Syst., 2004, pp. 1561–

1565.

[18] F. J. Damerau, ―A technique for

computer detection and correction of

spelling errors,‖ Commun. ACM, vol. 7, no.

3, pp. 171–176, 1964.

[19] P. Christen, ―A survey of indexing

techniques for scalable record linkage and

deduplication,‖ IEEE Trans. Knowl. Data

Eng., vol. 24, no. 9, pp. 1537–1555, Sep.

2012.

[20] B. Kille, F. Hopfgartner, T. Brodt, and

T. Heintz, ―The Plista dataset,‖ in Proc. Int.

Workshop Challenge News Recommender

Syst., 2013, pp. 16–23.

