

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1096

Keyword Search In Top Down Xml
Rangu Ravali & Mr. Kalyanapu Srinivas

1M.Tech, Department of CSE, Vaagdevi College of Engineering, Bollikunta Warangal,

Telangana, Mail id: ravaliravali150@gmail.com,

2Assosciate Professor, Department of CSE, Vaagdevi College of Engineering, Bollikunta

Warangal, Telangana, Mail ID: Kalyansr555@gmail.com,

ABSTRACT: Efficiently answering XML

keyword queries has attracted much research

effort in the last decade. The key factors resulting

in the inefficiency of existing methods are the

common-ancestor-repetition (CAR) and visiting-

useless-nodes (VUN) problems. To address the

CAR problem, we propose a generic top-down

processing strategy to answer a given keyword

query w.r.t. LCA/SLCA/ELCA semantics. By

“top-down”, we mean that we visit all common

ancestor (CA) nodes in a depth-first, left-to-right

order; by “generic”, we mean that our method is

independent of the query semantics. To address

the VUN problem, we propose to use child nodes,

rather than descendant nodes to test the

satisfiability of a node v w.r.t. the given

semantics. We propose two algorithms that are

based on either traditional inverted lists or our

newly proposed LLists to improve the overall

performance. We further propose several

algorithms that are based on hash search to

simplify the operation of finding CA nodes from

all involved LLists. The experimental results

verify the benefits of our methods according to

various evaluation metrics.

1 INTRODUCTION

XML has been successfully used in many

applications, such as that in scientific and

business domains, as the standard format for

storing, publishing and exchanging data.

Compared with structured query languages, such

as XPath and XQuery, keyword search is also

gained popularity on XML data as it relieves

users from understanding the complex query

languages and the structure of the underlying

data, and has received much attention due to that

results are not the entire documents anymore but

nested fragments. Typically, an XML document

can be modeled as a node labeled tree T. For a

given keyword query Q, several semantics have

been proposed to define meaningful results, for

which the basic semantics is Lowest Common

Ancestor. Based on LCA, the most widely

adopted query semantics are Exclusive LCA

(ELCA) [2], and Smallest LCA (SLCA) [5], [7],

[8], [9], [11]. SLCA defines a subset of LCA

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:ravaliravali150@gmail.com
mailto:Kalyansr555@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1097

nodes, of which no LCA is the ancestor of any

other LCA. As a comparison, ELCA tries to

capture more meaningful results, it may take

some LCAs that are not SLCAs as meaningful

results. Assume that for a given query Q ¼ fk1;

k2…..kmg, each keyword appears at least once

in the given XML document. Intuitively, to get

all CA nodes of Q, our method takes all nodes in

the set of inverted IDDewey label lists as leaf

nodes of an XML tree Tv rooted at node v, and

checks whether each node of Tv contains all

keywords of Q in a “top-down” way. The “top-

down” means that if Tv contains all keywords of

Q, then v must be a CA node. We then remove v

and get a forest Fv ¼ fTv1; Tv2 ; . . . ; Tvng of

subtrees rooted at the n child nodes of v. Based

on Fv, we further find the set of subtrees FCA v

Fv, where each subtree Tvi 2 FCA v contains

every keyword of Q at least once, i.e., node vi is

a CA node. If FCA v ¼ ;, it means that for Tv,

only v is a CA node, then we can safely skip all

nodes of Tv from being processed; otherwise, for

each subtree Tvi 2 FCA v , we recursively

compute its subtree set FCA vi until FCA vi ¼ ;.

Let SiðvÞ denote, for v, the set of child nodes

that contain ki, ScaðvÞ the set of child CA nodes

of v, and CAðTvÞ the set of CA nodes in Tv.

Formula 2 means that the set of CA nodes of Q

equals the set of CA nodes in Tr, where r is the

document root node. CAðTrÞ can be recursively

computed according to Formula 3. Formula 3

means that for a given CA node v, the set of CA

nodes in Tv is equal to the union of fvg and the

set of CA nodes in subtrees rooted at v’s child

CA nodes, which can be further computed by

Formula

2 RELATED WORKS

DIL [2] sequentially processes all involved

Dewey labels in document order, its performance

is linear to the number of involved Dewey labels.

IS [3] sequentially processes all Dewey labels of

the shortest list L1 one by one. In each iteration,

it picks from L1 a Dewey label l and uses it to

probe other lists to get a candidate ELCA node.

As the basic operations of the two algorithms are

OP1 and OP2, they heavily suffer from both the

CAR and VUN problems. JDewey-E [7]

computes ELCA results by performing set

intersection operation on all lists of each tree

depth from the leaf to the root. For all lists of

each level, after finding the set of common

nodes, it needs to recursively delete all ancestor

nodes in all lists of higher levels. As a node

could be a parent node of many other CA nodes,

and the deletion operation needs to process each

parent-child relationship separately, JDewey-E

suffers from the CAR problem. Meanwhile, as it

performs set intersection on all lists of each tree

depth fromthe leaf to the root, they will firstly

visit nodes of V2 for Q2, thus it also suffers

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1098

from the VUN problem. As some node IDs

appear in many different IDDewey labels of the

same inverted list, and HC [4] processes each

IDDewey label of the shortest list separately, it

still suffers from the CAR problem. Moreover,

HC needs to push each component of every

IDDewey label of the shortest inverted list into a

stack, it also suffers the VUN problem when the

pushed components are UNs.

3 THE BASELINE ALGORITHM

Our baseline ELCA algorithm recursively gets

all CA nodes in a top-down way, then checks the

satisfiability of each CA node, which works on

the traditional inverted lists of labels w.r.t.

Dewey or one of its variants. To do so, it needs

to solve two problems: ðP1Þ identify the set of

child CA nodes for each CA node v, ðP2Þ check

v’s satisfiability w.r.t. ELCA semantics. For P1,

given a query Q with m keywords, we know that

8i 2 ½1;m_; ScaðvÞ SiðvÞ. Thus given a CA

node v and its subtree set Fv ¼ fTv1; Tv2 ; . . . ;

Tvng, to get ScaðvÞ, we do not need to check

whether each subtree contains all query

keywords; instead, we just need to check whether

each node in SminvÞ, which contains least

number of child nodes of v w. r.t. kmin, appears

in SiðvÞði 2 ½1;m_ ^ i 6¼ minÞ. Even if we

know the lengths of all child lists, it’s difficult to

know which one is SminðvÞ. Fortunately, as all

node IDs in each child list of v are sorted in

ascending order, our newly proposed set

intersection algorithm guarantees that the number

of processed child nodes for each CA node v is

bounded by jSminðvÞj. For P2, we use the

following Lemma to check the satisfiability of v,

which is similar to .Lemma 1. Given a query Q ¼

fk1; k2; . . . ; kmg and CA node v,

3.1 The Algorithm

Based on the above description, Algorithm 1

recursively gets all CA nodes in a top-down way.

For each CA node v, it finds out the number of

occurrences of each query keyword in its subtree,

i.e., the length of each of its child list, then gets

v’s child CA nodes by intersecting v’s child lists

using binary search operation. After that, it

checks the satisfiability of v by Lemma 1. To do

so, each inverted list Li is associated with a

cursor Ci pointing to some IDDewey label of Li,

Ci½x_

denotes the xth component of the IDDewey label

that Ci points to, and posðCiÞ is used to denote

Ci’s position in Li. Given a node v, we use lðvÞ

to denote the IDDewey label of v, v:Ni denotes

the number of keyword occurrences w.r.t. ki in

the subtree rooted v. As shown in Algorithm 1, it

firstly initializes the subtree rooted at the root

node of the given XML tree in line 1, then calls

the procedure processCANodeðÞ to recursively

get all CA nodes in line 2.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1099

The procedure processCANodeðÞ works as

follows. Itfirstly gets the depth of v’s child nodes

in line 1. In lines 2-7, it repeatedly gets all child

CA nodes of v. For each child CA node u got in

line 3, it firstly gets the values of variables

associated with v in line 5; in line 6, it excludes

the occurrences of all query keywords under u

from that under v. In line 7, it calls

processCANodeðÞ to recursively process u.

After processing all childCA nodes of v, if 8i 2

½1;m_; v:Ni > 0, according to Lemma 1, v is an

ELCA node and outputted in line

4. THE HASH SEARCH BASED

ALGORITHMS

Even though TDELCA-L reduces the time

complexity compared with TDELCA, it relies on

the probe operation (implemented by binary

search) to align the cursors of inverted lists. To

further improve the overall performance, we

consider the existence of additional hash indexes

[4], [11], [17] on inverted lists, such that each

probe operation takes time without using binary

search operation. the first hash table HF records

the number of nodes in each Li, which is used to

choose the shortest LList. For each Li, another

hash table Hi records, for each node of Li, the

number of its child nodes that contain ki. Note

that Hi in our methods is different with that of

[4], [11], [17], where Hi records, for each node v,

the number of v’s descendant nodes that directly

contain ki., we know that the number of nodes of

L1 is 11, which can be denoted as HF ½k1_ ¼

11. According node 1 has three child nodes

containing k1(“Tom”), which can be denoted as

H1½1_ ¼ 3. Node 5 does not have child nodes

containing k1, thus H1½5_ ¼ 0. Similarly, node

3 does not contain k1, which is denoted as 3 62

H1.

4.1 The Baseline Hash Search Algorithm

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1100

Assume that jL1j _ jL2j _ __ _ _ jLmj, the main

idea of our baseline hash search algorithm is:

take the shortest LList L1 as the working list and

recursively process all CA nodes in top-down

way. For each CA node v, sequentially check

whether each of its child nodes in L1 is a CA

node, then output v if it is an ELCA result.

Algorithm 2 shows the detailed description of the

TDELCA-H algorithm. Compared with

TDELCA and TDELCA-L, for a given query Q,

TDELCA-H only needs to process all CA nodes

and their child nodes in L1. For each processed

node v in L1, TDELCA-H checks whether v is a

CA node by hash probe operations, rather than

set intersection operations on a set of child lists9

5 CONCLUSIONS

Considering that the key factors resulting in the

inefficiency for existing XML keyword search

algorithms are the CAR and VUN problems, we

proposed a generictop-down processing strategy

that visits all CA nodes only once, thus avoids

the CAR problem. We proved that the

satisfiability of a node v w.r.t. the given

semantics can be determined by v’s child nodes,

based on which our methods avoid the VUN

problem. Another salient feature is that our

approach is independent of query semantics. We

proposed two efficient algorithms that are based

on either traditional inverted lists or our newly

proposed LLists to improve the overall

performance. Further, we proposed three hash

search-based methods to reduce the time

complexity. The experimental results

demonstrate the performance advantages of our

proposed methods over existing ones. One of our

future work is studying disk-based index to

facilitate XML keyword query processing when

the size of indexes becomes too large to be

completely loaded into memory.

REFERENCES

[1] S. Cohen, J.Mamou, Y. Kanza, and Y. Sagiv,

“XSEarch: A semantic search engine for XML,” in

Proc. 29th Int. Conf. Very Large Data Bases, 2003,

pp. 45–56.

 [2] L. Guo, F. Shao, C. Botev, and J.

Shanmugasundaram, “Xrank: Ranked keyword

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1101

search over XML documents,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2003, pp. 16–27.

[3] Y. Xu and Y. Papakonstantinou, “Efficient LCA

based keyword search in XML data,” in Proc. 11th

Int. Conf. Extending Database Techn.: Adv. Database

Technol., 2008, pp. 535–546.

[4] R. Zhou, C. Liu, and J. Li, “Fast ELCA

computation for keyword queries on XML data,” in

Proc. 13th Int. Conf. Extending Database Technol.,

2010, pp. 549–560.

[5] Y. Xu and Y. Papakonstantinou, “Efficient

keyword search for smallest LCAS in XML

databases,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2005, pp. 537–538.

[6] Y. Li, C. Yu, and H. V. Jagadish, “Schema-free

xquery,” in Proc. 13th Int. Conf. Very Large Data

Bases, 2004, pp. 72–83.

[7] L. J. Chen and Y. Papakonstantinou, “Supporting

top-K keyword search in XML databases,” in Proc.

26th Int. Conf. Data Eng., 2010, pp. 689–700.

[8] C. Sun, C. Y. Chan, and A. K. Goenka,

“Multiway SLCA-based keyword search in XML

data,” in Proc. 16th Int. Conf. World Wide Web,

2007, pp. 1043–1052.

[9] Z. Liu and Y. Chen, “Reasoning and identifying

relevant matches for XML keyword search,” J. Proc.

Very Large Data Bases Endowment, vol. 1, no. 1, pp.

921–932, 2008.

[10] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective

keyword search for valuable LCAS over XML

documents,” in Proc. 16th ACM Conf. Conf. Inform.

Knowl. Manage., 2007, pp. 31–40.

[11] W. Wang, X. Wang, and A. Zhou, “Hash-search:

An efficient SLCA-based keyword search algorithm

on XML documents,” in Proc. 14th Int. Conf.

Database Syst. Adv. Appl., 2009, pp. 496–510.

[12] Y. Chen, W. Wang, and Z. Liu, “Keyword-based

search and exploration on databases,” in Proc. IEEE

27th Int. Conf. Data Eng., 2011, pp. 1380–1383.

[13] B. Q. Truong, S. S. Bhowmick, C. E. Dyreson,

and A. Sun, “MESSIAH: Missing element-conscious

SLCA nodes search in XML data,” in Proc.

SIGMOD, 2013, pp. 37–48.

[14] L. Kong, R. Gilleron, and A. Lemay, “Retrieving

meaningful relaxed tightest fragments for XML

keyword search,” in Proc. 12th Int. Conf. Extending

Database Technol.: Adv. Database Technol., 20 pp.

815–826.

[15] V. Hristidis, N. Koudas, Y. Papakonstantinou,

and D. Srivastava, “Keyword proximity search in

XML trees,” IEEE Trans. Knowl. Data Eng., vol. 18,

no. 4, pp. 525–539, 2006.

[16] J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen,

X. Lin, and J. Guo, “Fast SLCA and ELCA

computation for XML keyword queries based on set

intersection,” in Proc. 28th Int. Conf. Data Eng.,

2012, pp. 905–916.

[17] J. Zhou, Z. Bao, W. Wang, J. Zhao, and X.

Meng, “Efficient query processing for XML keyword

queries based on the idlist index,” Int. J. Very Large

Data Bases, vol. 23, no. 1, pp. 25–50, 2014.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

