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Abstract— efficiently answering XML 

keyword queries has attracted much research 

effort in the last decade. The key factors 

resulting in the inefficiency of existing methods 

are the common-ancestor-repetition (CAR) and 

visiting-useless-nodes (VUN) problems. To 

address the CAR problem, we propose a 

generic top-down processing strategy to 

answer a given keyword query w.r.t. 

LCA/SLCA/ELCA semantics. By “top-down”, 

we mean that we visit all common ancestor 

(CA) nodes in a depth-first, left-to-right order; 

by “generic”, we mean that our method is 

independent of the query semantics. To address 

the VUN problem, we propose to use child 

nodes, rather than descendant nodes to test the 

satisfiability of a node v w.r.t. the given 

semantics. We propose two algorithms that are 

based on either traditional inverted lists or our 

newly proposed LLists to improve the overall 

performance. We further propose several 

algorithms that are based on hash search to 

simplify the operation of finding CA nodes 

from all involved LLists. The experimental 

results verify the benefits of our methods 

according to various evaluation metrics. 

1 INTRODUCTION 

XML has been successfully used in many 

applications, such as that in scientific and 

business domains, as the standard format for 

storing, publishing and exchanging data. 

Compared with structured query languages, 

such as XPath and XQuery, keyword search is 

also gained popularity on XML data as it 

relieves users from understanding the complex 

query languages and the structure of the 

underlying data, and has received much 

attention  due to that results are not the entire 

documents anymore but nested fragments. 

Typically, an XML document can be modeled 

as a node labeled tree T. For a given keyword 

query Q, several semantics have been proposed 

to define meaningful results, for which the 

basic semantics is Lowest Common Ancestor. 

Based on LCA, the most widely adopted query 

semantics are Exclusive LCA (ELCA) [2], and 

Smallest LCA (SLCA) [5], [7], [8], [9], [11]. 

SLCA defines a subset of LCA nodes, of which 

no LCA is the ancestor of any other LCA. As a 

comparison, ELCA tries to capture more 

meaningful results, it may take some LCAs that 

are not SLCAs as meaningful results. Assume 
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that for a given query Q ¼ fk1; k2…..kmg, 

each keyword appears at least once in the given 

XML document. Intuitively, to get all CA 

nodes of Q, our method takes all nodes in the 

set of inverted IDDewey label lists as leaf 

nodes of an XML tree Tv rooted at node v, and 

checks whether each node of Tv contains all 

keywords of Q in a “top-down” way. The “top-

down” means that if Tv contains all keywords 

of Q, then v must be a CA node. We then 

remove v and get a forest Fv ¼ fTv1; Tv2 ; . . . 

; Tvng of subtrees rooted at the n child nodes 

of v. Based on Fv, we further find the set of 

subtrees FCA v  Fv, where each subtree Tvi 2 

FCA v contains every keyword of Q at least 

once, i.e., node vi is a CA node. If FCA v ¼ ;, 

it means that for Tv, only v is a CA node, then 

we can safely skip all nodes of Tv from being 

processed; otherwise, for each subtree Tvi 2 

FCA v , we recursively compute its subtree set 

FCA vi until FCA vi ¼ ;. Let SiðvÞ denote, for 

v, the set of child nodes that contain ki, ScaðvÞ 

the set of child CA nodes of v, and CAðTvÞ 

the set of CA nodes in Tv. Formula 2 means 

that the set of CA nodes of Q equals the set of 

CA nodes in Tr, where r is the document root 

node. CAðTrÞ can be recursively computed 

according to Formula 3. Formula 3 means that 

for a given CA node v, the set of CA nodes in 

Tv is equal to the union of fvg and the set of 

CA nodes in subtrees rooted at v’s child CA 

nodes, which can be further computed by 

Formula 

2 RELATED WORKS 

DIL [2] sequentially processes all involved 

Dewey labels in document order, its 

performance is linear to the number of 

involved Dewey labels. IS [3] sequentially 

processes all Dewey labels of the shortest list 

L1 one by one. In each iteration, it picks from 

L1 a Dewey label l and uses it to probe other 

lists to get a candidate ELCA node. As the 

basic operations of the two algorithms are OP1 

and OP2, they heavily suffer from both the 

CAR and VUN problems. JDewey-E [7] 

computes ELCA results by performing set 

intersection operation on all lists of each tree 

depth from the leaf to the root. For all lists of 

each level, after finding the set of common 

nodes, it needs to recursively delete all ancestor 

nodes in all lists of higher levels. As a node 

could be a parent node of many other CA 

nodes, and the deletion operation needs to 

process each parent-child relationship 

separately, JDewey-E suffers from the CAR 

problem. Meanwhile, as it performs set 

intersection on all lists of each tree depth 

fromthe leaf to the root, they will firstly visit 

nodes of V2  for Q2, thus it also suffers from 

the VUN problem. As some node IDs appear in 

many different IDDewey labels of the same 

inverted list, and HC [4] processes each 

IDDewey label of the shortest list separately, it 
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still suffers from the CAR problem. Moreover, 

HC needs to push each component of every 

IDDewey label of the shortest inverted list into 

a stack, it also suffers the VUN problem when 

the pushed components are UNs. 

3 THE BASELINE ALGORITHM 

Our baseline ELCA algorithm recursively gets 

all CA nodes in a top-down way, then checks 

the satisfiability of each CA node, which works 

on the traditional inverted lists of labels w.r.t. 

Dewey or one of its variants. To do so, it needs 

to solve two problems: ðP1Þ identify the set of 

child CA nodes for each CA node v, ðP2Þ 

check v’s satisfiability w.r.t. ELCA semantics. 

For P1, given a query Q with m keywords, we 

know that 8i 2 ½1;m_; ScaðvÞ  SiðvÞ. Thus 

given a CA node v and its subtree set Fv ¼ 

fTv1; Tv2 ; . . . ; Tvng, to get ScaðvÞ, we do 

not need to check whether each subtree 

contains all query keywords; instead, we just 

need to check whether each node in SminvÞ, 

which contains least number of child nodes of 

v w. r.t. kmin, appears in SiðvÞði 2 ½1;m_ ^ i 

6¼ minÞ. Even if we know the lengths of all 

child lists, it’s difficult to know which one is 

SminðvÞ. Fortunately, as all node IDs in each 

child list of v are sorted in ascending order, our 

newly proposed set intersection algorithm 

guarantees that the number of processed child 

nodes for each CA node v is bounded by 

jSminðvÞj. For P2, we use the following 

Lemma to check the satisfiability of v, which is 

similar to .Lemma 1. Given a query Q ¼ fk1; 

k2; . . . ; kmg and CA node v, 

3.1 The Algorithm 

Based on the above description, Algorithm 1 

recursively gets all CA nodes in a top-down 

way. For each CA node v, it finds out the 

number of occurrences of each query keyword 

in its subtree, i.e., the length of each of its child 

list, then gets v’s child CA nodes by 

intersecting v’s child lists 

using binary search operation. After that, it 

checks the satisfiability of v by Lemma 1. To 

do so, each inverted list Li is associated with a 

cursor Ci pointing to some IDDewey label of 

Li, Ci½x_ 

denotes the xth component of the IDDewey 

label that Ci points to, and posðCiÞ is used to 

denote Ci’s position in Li. Given a node v, we 

use lðvÞ to denote the IDDewey label of v, 

v:Ni denotes the number of keyword 

occurrences w.r.t. ki in the subtree rooted v. As 

shown in Algorithm 1, it firstly initializes the 

subtree rooted at the root node of the given 

XML tree in line 1, then calls the procedure 

processCANodeðÞ to recursively get all CA 

nodes in line 2. 
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The procedure processCANodeðÞ works as 

follows. Itfirstly gets the depth of v’s child 

nodes in line 1. In lines 2-7, it repeatedly gets 

all child CA nodes of v. For each child CA 

node u got in line 3, it firstly gets the values of 

variables associated with v in line 5; in line 6, 

it excludes the occurrences of all query 

keywords under u from that under v. In line 7, 

it calls processCANodeðÞ to recursively 

process u. After processing all childCA nodes 

of v, if 8i 2 ½1;m_; v:Ni > 0, according to 

Lemma 1, v is an ELCA node and outputted in 

line  

4. THE HASH SEARCH BASED 

ALGORITHMS 

Even though TDELCA-L reduces the time 

complexity compared with TDELCA, it relies 

on the probe operation (implemented by binary 

search) to align the cursors of inverted lists. To 

further improve the overall performance, we 

consider the existence of additional hash 

indexes [4], [11], [17] on inverted lists, such 

that each probe operation takes time without 

using binary search operation. the first hash 

table HF records the number of nodes in each 

Li, which is used to choose the shortest LList. 

For each Li, another hash table Hi records, for 

each node of Li, the number of its child nodes 

that contain ki. Note that Hi in our methods is 

different with that of [4], [11], [17], where Hi 

records, for each node v, the number of v’s 

descendant nodes that directly contain ki., we 

know that the number of nodes of L1 is 11, 

which can be denoted as HF ½k1_ ¼ 11. 

According node 1 has three child nodes 

containing k1(“Tom”), which can be denoted 

as H1½1_ ¼ 3. Node 5 does not have child 

nodes containing k1, thus H1½5_ ¼ 0. 

Similarly, node 3 does not contain k1, which is 

denoted as 3 62 H1. 
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4.1 The Baseline Hash Search Algorithm 

Assume that jL1j _ jL2j _ __ _ _ jLmj, the 

main idea of our baseline hash search 

algorithm is: take the shortest LList L1 as the 

working list and recursively process all CA 

nodes in top-down way. For each CA node v, 

sequentially check whether each of its child 

nodes in L1 is a CA node, then output v if it is 

an ELCA result. 

 

Algorithm 2 shows the detailed description of 

the TDELCA-H algorithm. Compared with 

TDELCA and TDELCA-L, for a given query 

Q, TDELCA-H only needs to process all CA 

nodes and their child nodes in L1. For each 

processed node v in L1, TDELCA-H checks 

whether v is a CA node by hash probe 

operations, rather than set intersection 

operations on a set of child lists9 5 

CONCLUSIONS 

Considering that the key factors resulting in the 

inefficiency for existing XML keyword search 

algorithms are the CAR and VUN problems, 

we proposed a generictop-down processing 

strategy that visits all CA nodes only once, thus 

avoids the CAR problem. We proved that the 

satisfiability of a node v w.r.t. the given 

semantics can be determined by v’s child 

nodes, based on which our methods avoid the 

VUN problem. Another salient feature is that 

our approach is independent of query 

semantics. We proposed two efficient 

algorithms that are based on either traditional 

inverted lists or our newly proposed LLists to 

improve the overall performance. Further, we 

proposed three hash search-based methods to 

reduce the time complexity. The experimental 

results demonstrate the performance 

advantages of our proposed methods over 

existing ones. One of our future work is 

studying disk-based index to facilitate XML 

keyword query processing when the size of 

indexes becomes too large to be completely 

loaded into memory. 
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