

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1267

Keyword Search In Top Down Xml
Rangu Ravali & Mr. Kalyanapu Srinivas

1M.Tech, Department of CSE, Vaagdevi College of Engineering, Bollikunta Warangal, Telangana,

2Assistant Professor, Department of CSE, Vaagdevi College of Engineering, Bollikunta Warangal,

Telangana,

Mail id: ravaliravali150@gmail.com, Mail ID: Kalyansr555@gmail.com

Abstract— efficiently answering XML

keyword queries has attracted much research

effort in the last decade. The key factors

resulting in the inefficiency of existing methods

are the common-ancestor-repetition (CAR) and

visiting-useless-nodes (VUN) problems. To

address the CAR problem, we propose a

generic top-down processing strategy to

answer a given keyword query w.r.t.

LCA/SLCA/ELCA semantics. By “top-down”,

we mean that we visit all common ancestor

(CA) nodes in a depth-first, left-to-right order;

by “generic”, we mean that our method is

independent of the query semantics. To address

the VUN problem, we propose to use child

nodes, rather than descendant nodes to test the

satisfiability of a node v w.r.t. the given

semantics. We propose two algorithms that are

based on either traditional inverted lists or our

newly proposed LLists to improve the overall

performance. We further propose several

algorithms that are based on hash search to

simplify the operation of finding CA nodes

from all involved LLists. The experimental

results verify the benefits of our methods

according to various evaluation metrics.

1 INTRODUCTION

XML has been successfully used in many

applications, such as that in scientific and

business domains, as the standard format for

storing, publishing and exchanging data.

Compared with structured query languages,

such as XPath and XQuery, keyword search is

also gained popularity on XML data as it

relieves users from understanding the complex

query languages and the structure of the

underlying data, and has received much

attention due to that results are not the entire

documents anymore but nested fragments.

Typically, an XML document can be modeled

as a node labeled tree T. For a given keyword

query Q, several semantics have been proposed

to define meaningful results, for which the

basic semantics is Lowest Common Ancestor.

Based on LCA, the most widely adopted query

semantics are Exclusive LCA (ELCA) [2], and

Smallest LCA (SLCA) [5], [7], [8], [9], [11].

SLCA defines a subset of LCA nodes, of which

no LCA is the ancestor of any other LCA. As a

comparison, ELCA tries to capture more

meaningful results, it may take some LCAs that

are not SLCAs as meaningful results. Assume

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:ravaliravali150@gmail.com
mailto:Kalyansr555@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1268

that for a given query Q ¼ fk1; k2…..kmg,

each keyword appears at least once in the given

XML document. Intuitively, to get all CA

nodes of Q, our method takes all nodes in the

set of inverted IDDewey label lists as leaf

nodes of an XML tree Tv rooted at node v, and

checks whether each node of Tv contains all

keywords of Q in a “top-down” way. The “top-

down” means that if Tv contains all keywords

of Q, then v must be a CA node. We then

remove v and get a forest Fv ¼ fTv1; Tv2 ; . . .

; Tvng of subtrees rooted at the n child nodes

of v. Based on Fv, we further find the set of

subtrees FCA v Fv, where each subtree Tvi 2

FCA v contains every keyword of Q at least

once, i.e., node vi is a CA node. If FCA v ¼ ;,

it means that for Tv, only v is a CA node, then

we can safely skip all nodes of Tv from being

processed; otherwise, for each subtree Tvi 2

FCA v , we recursively compute its subtree set

FCA vi until FCA vi ¼ ;. Let SiðvÞ denote, for

v, the set of child nodes that contain ki, ScaðvÞ

the set of child CA nodes of v, and CAðTvÞ

the set of CA nodes in Tv. Formula 2 means

that the set of CA nodes of Q equals the set of

CA nodes in Tr, where r is the document root

node. CAðTrÞ can be recursively computed

according to Formula 3. Formula 3 means that

for a given CA node v, the set of CA nodes in

Tv is equal to the union of fvg and the set of

CA nodes in subtrees rooted at v’s child CA

nodes, which can be further computed by

Formula

2 RELATED WORKS

DIL [2] sequentially processes all involved

Dewey labels in document order, its

performance is linear to the number of

involved Dewey labels. IS [3] sequentially

processes all Dewey labels of the shortest list

L1 one by one. In each iteration, it picks from

L1 a Dewey label l and uses it to probe other

lists to get a candidate ELCA node. As the

basic operations of the two algorithms are OP1

and OP2, they heavily suffer from both the

CAR and VUN problems. JDewey-E [7]

computes ELCA results by performing set

intersection operation on all lists of each tree

depth from the leaf to the root. For all lists of

each level, after finding the set of common

nodes, it needs to recursively delete all ancestor

nodes in all lists of higher levels. As a node

could be a parent node of many other CA

nodes, and the deletion operation needs to

process each parent-child relationship

separately, JDewey-E suffers from the CAR

problem. Meanwhile, as it performs set

intersection on all lists of each tree depth

fromthe leaf to the root, they will firstly visit

nodes of V2 for Q2, thus it also suffers from

the VUN problem. As some node IDs appear in

many different IDDewey labels of the same

inverted list, and HC [4] processes each

IDDewey label of the shortest list separately, it

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1269

still suffers from the CAR problem. Moreover,

HC needs to push each component of every

IDDewey label of the shortest inverted list into

a stack, it also suffers the VUN problem when

the pushed components are UNs.

3 THE BASELINE ALGORITHM

Our baseline ELCA algorithm recursively gets

all CA nodes in a top-down way, then checks

the satisfiability of each CA node, which works

on the traditional inverted lists of labels w.r.t.

Dewey or one of its variants. To do so, it needs

to solve two problems: ðP1Þ identify the set of

child CA nodes for each CA node v, ðP2Þ

check v’s satisfiability w.r.t. ELCA semantics.

For P1, given a query Q with m keywords, we

know that 8i 2 ½1;m_; ScaðvÞ SiðvÞ. Thus

given a CA node v and its subtree set Fv ¼

fTv1; Tv2 ; . . . ; Tvng, to get ScaðvÞ, we do

not need to check whether each subtree

contains all query keywords; instead, we just

need to check whether each node in SminvÞ,

which contains least number of child nodes of

v w. r.t. kmin, appears in SiðvÞði 2 ½1;m_ ^ i

6¼ minÞ. Even if we know the lengths of all

child lists, it’s difficult to know which one is

SminðvÞ. Fortunately, as all node IDs in each

child list of v are sorted in ascending order, our

newly proposed set intersection algorithm

guarantees that the number of processed child

nodes for each CA node v is bounded by

jSminðvÞj. For P2, we use the following

Lemma to check the satisfiability of v, which is

similar to .Lemma 1. Given a query Q ¼ fk1;

k2; . . . ; kmg and CA node v,

3.1 The Algorithm

Based on the above description, Algorithm 1

recursively gets all CA nodes in a top-down

way. For each CA node v, it finds out the

number of occurrences of each query keyword

in its subtree, i.e., the length of each of its child

list, then gets v’s child CA nodes by

intersecting v’s child lists

using binary search operation. After that, it

checks the satisfiability of v by Lemma 1. To

do so, each inverted list Li is associated with a

cursor Ci pointing to some IDDewey label of

Li, Ci½x_

denotes the xth component of the IDDewey

label that Ci points to, and posðCiÞ is used to

denote Ci’s position in Li. Given a node v, we

use lðvÞ to denote the IDDewey label of v,

v:Ni denotes the number of keyword

occurrences w.r.t. ki in the subtree rooted v. As

shown in Algorithm 1, it firstly initializes the

subtree rooted at the root node of the given

XML tree in line 1, then calls the procedure

processCANodeðÞ to recursively get all CA

nodes in line 2.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1270

The procedure processCANodeðÞ works as

follows. Itfirstly gets the depth of v’s child

nodes in line 1. In lines 2-7, it repeatedly gets

all child CA nodes of v. For each child CA

node u got in line 3, it firstly gets the values of

variables associated with v in line 5; in line 6,

it excludes the occurrences of all query

keywords under u from that under v. In line 7,

it calls processCANodeðÞ to recursively

process u. After processing all childCA nodes

of v, if 8i 2 ½1;m_; v:Ni > 0, according to

Lemma 1, v is an ELCA node and outputted in

line

4. THE HASH SEARCH BASED

ALGORITHMS

Even though TDELCA-L reduces the time

complexity compared with TDELCA, it relies

on the probe operation (implemented by binary

search) to align the cursors of inverted lists. To

further improve the overall performance, we

consider the existence of additional hash

indexes [4], [11], [17] on inverted lists, such

that each probe operation takes time without

using binary search operation. the first hash

table HF records the number of nodes in each

Li, which is used to choose the shortest LList.

For each Li, another hash table Hi records, for

each node of Li, the number of its child nodes

that contain ki. Note that Hi in our methods is

different with that of [4], [11], [17], where Hi

records, for each node v, the number of v’s

descendant nodes that directly contain ki., we

know that the number of nodes of L1 is 11,

which can be denoted as HF ½k1_ ¼ 11.

According node 1 has three child nodes

containing k1(“Tom”), which can be denoted

as H1½1_ ¼ 3. Node 5 does not have child

nodes containing k1, thus H1½5_ ¼ 0.

Similarly, node 3 does not contain k1, which is

denoted as 3 62 H1.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1271

4.1 The Baseline Hash Search Algorithm

Assume that jL1j _ jL2j _ __ _ _ jLmj, the

main idea of our baseline hash search

algorithm is: take the shortest LList L1 as the

working list and recursively process all CA

nodes in top-down way. For each CA node v,

sequentially check whether each of its child

nodes in L1 is a CA node, then output v if it is

an ELCA result.

Algorithm 2 shows the detailed description of

the TDELCA-H algorithm. Compared with

TDELCA and TDELCA-L, for a given query

Q, TDELCA-H only needs to process all CA

nodes and their child nodes in L1. For each

processed node v in L1, TDELCA-H checks

whether v is a CA node by hash probe

operations, rather than set intersection

operations on a set of child lists9 5

CONCLUSIONS

Considering that the key factors resulting in the

inefficiency for existing XML keyword search

algorithms are the CAR and VUN problems,

we proposed a generictop-down processing

strategy that visits all CA nodes only once, thus

avoids the CAR problem. We proved that the

satisfiability of a node v w.r.t. the given

semantics can be determined by v’s child

nodes, based on which our methods avoid the

VUN problem. Another salient feature is that

our approach is independent of query

semantics. We proposed two efficient

algorithms that are based on either traditional

inverted lists or our newly proposed LLists to

improve the overall performance. Further, we

proposed three hash search-based methods to

reduce the time complexity. The experimental

results demonstrate the performance

advantages of our proposed methods over

existing ones. One of our future work is

studying disk-based index to facilitate XML

keyword query processing when the size of

indexes becomes too large to be completely

loaded into memory.

REFERENCES

[1] S. Cohen, J.Mamou, Y. Kanza, and Y. Sagiv,

“XSEarch: A semantic search engine for XML,” in

Proc. 29th Int. Conf. Very Large Data Bases, 2003,

pp. 45–56.

 [2] L. Guo, F. Shao, C. Botev, and J.

Shanmugasundaram, “Xrank: Ranked keyword

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1272

search over XML documents,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2003, pp. 16–

27.

[3] Y. Xu and Y. Papakonstantinou, “Efficient LCA

based keyword search in XML data,” in Proc. 11th

Int. Conf. Extending Database Techn.: Adv.

Database Technol., 2008, pp. 535–546.

[4] R. Zhou, C. Liu, and J. Li, “Fast ELCA

computation for keyword queries on XML data,” in

Proc. 13th Int. Conf. Extending Database Technol.,

2010, pp. 549–560.

[5] Y. Xu and Y. Papakonstantinou, “Efficient

keyword search for smallest LCAS in XML

databases,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2005, pp. 537–538.

[6] Y. Li, C. Yu, and H. V. Jagadish, “Schema-free

xquery,” in Proc. 13th Int. Conf. Very Large Data

Bases, 2004, pp. 72–83.

[7] L. J. Chen and Y. Papakonstantinou,

“Supporting top-K keyword search in XML

databases,” in Proc. 26th Int. Conf. Data Eng.,

2010, pp. 689–700.

[8] C. Sun, C. Y. Chan, and A. K. Goenka,

“Multiway SLCA-based keyword search in XML

data,” in Proc. 16th Int. Conf. World Wide Web,

2007, pp. 1043–1052.

[9] Z. Liu and Y. Chen, “Reasoning and identifying

relevant matches for XML keyword search,” J.

Proc. Very Large Data Bases Endowment, vol. 1,

no. 1, pp. 921–932, 2008.

[10] G. Li, J. Feng, J. Wang, and L. Zhou,

“Effective keyword search for valuable LCAS over

XML documents,” in Proc. 16th ACM Conf. Conf.

Inform. Knowl. Manage., 2007, pp. 31–40.

[11] W. Wang, X. Wang, and A. Zhou, “Hash-

search: An efficient SLCA-based keyword search

algorithm on XML documents,” in Proc. 14th Int.

Conf. Database Syst. Adv. Appl., 2009, pp. 496–

510.

[12] Y. Chen, W. Wang, and Z. Liu, “Keyword-

based search and exploration on databases,” in

Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp.

1380–1383.

[13] B. Q. Truong, S. S. Bhowmick, C. E. Dyreson,

and A. Sun, “MESSIAH: Missing element-

conscious SLCA nodes search in XML data,” in

Proc. SIGMOD, 2013, pp. 37–48.

[14] L. Kong, R. Gilleron, and A. Lemay,

“Retrieving meaningful relaxed tightest fragments

for XML keyword search,” in Proc. 12th Int. Conf.

Extending Database Technol.: Adv. Database

Technol., 20 pp. 815–826.

[15] V. Hristidis, N. Koudas, Y. Papakonstantinou,

and D. Srivastava, “Keyword proximity search in

XML trees,” IEEE Trans. Knowl. Data Eng., vol.

18, no. 4, pp. 525–539, 2006.

[16] J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z.

Chen, X. Lin, and J. Guo, “Fast SLCA and ELCA

computation for XML keyword queries based on

set intersection,” in Proc. 28th Int. Conf. Data Eng.,

2012, pp. 905–916.

[17] J. Zhou, Z. Bao, W. Wang, J. Zhao, and X.

Meng, “Efficient query processing for XML

keyword queries based on the idlist index,” Int. J.

Very Large Data Bases, vol. 23, no. 1, pp. 25–50,

2014.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

