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Abstract 
 
This paper proposes Associate in Nursing optimized 

version of the acting code. The paper begins with 

characteristic a seed which will be used as basis to 

getacting codes. It then shows that beginning with a 

message that'ssolely2 bits long, in conjunction with3 

parity bits; one will add additional message bits 

incrementally. This approach ends up inimportant 

reduction within theelectronic equipment and provides 

flexibility to designers. solely the H(7,4) was sufficient 

to indicateAssociate in Nursing improvement of thirty 

three%within the hardware electronic equipment. 

Similar gains for larger sizes are argued for each 

hardware and package implementations. 

Key words:  
Hamming code; parity bits; distance;  error correction. 
 
1. Introduction 
 
Transmission errors have various causes including static 

on devices, environmental interferences or scratches on 

electronic data storage media. When a channel is error 

prone, error correction would likely result in better 

throughput compared to retransmission. However, 

correction is superior to the multiple transmissions modes 

used for space vehicle communications. For these modes, 

each nibble of data is sent several times and when 

received, a majority function is used to select the version 

with the highest frequency. The throughput of error 

correction codes is the main reason they are favored in 

storage devices, digital subscriber lines and mobile 

communications. 
 
In general, if the probability of a single bit error is denoted 

by e, then the probability of receiving an error free nibble 

is (1- e)
4
. The key for whether or not the Hamming code is 

preferable over other modes of retransmission depends on 

the value of e. As stated above, the Hamming code 

provides an error correction mechanism that is used by 

many applications including dynamic random access 

memory chips and satellite communications devices. The 

Hamming code has been 

 
 

proposed for deeply faded wireless asynchronous transfer 

mode networks [1]. The authors argued that the Hamming 

code is a better alternative to solutions suggested in [2-5]. 

In the same paper, the authors proposed a typical ROM 

implementation of the Hamming code showing that only 

25% of the typical ROM implementation circuitry would 

be necessary. 
 
We will briefly review the Hamming code in the next 

section. The rest of the paper is organized as follows. An 

optimized version of the Hamming code is given in section 

3. Section 4 presents analysis of the parity bits. The 

Hamming code H(7,4) as a basis for larger codes is 

discussed in section 5 and the conclusion is in section 6. 
 
2. Review of the Hamming Code. 

 
In 1947 R. W. Hamming proposed a thesis in which he 

declared that if a message M with m bits is to be 

transmitted, then, a code C with c bits must be generated. 

The length of M is related to that of C with the following 

equation: 
 

c  =  m  +  p  ≤  2
p

 –  1 ( 1 ) 
 
where p is the number of redundant bits, also called parity 

bits [6]. Without loss of generality, if we take m to be 

equal to 4, then solving equation 1 will result in p and c 

equal to 3 and 7 respectively. 
 
A Hamming code is computed using either even or odd 
parity. Table 1 displays the binary representation of the 
first 7 non-zero decimal digits. Here, the first row shows 

the decimal digits 3, 5, 6 and 7 as subscripts of column 

headers for the 3
rd

, 5
th

, 6
th

, and 7
th

 columns from the right 

respectively. There are no column headers for the first, 
second and fourth columns from the right simply because 
there are not needed at this point. Rows 2 though 4 give 
the corresponding binary representations of these 

subscripts. The row headers P1, P2 and P4 are the three 

parity bits representing the Hamming parity P. 
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 Table 1. Relationship between parity and message bits     

           

 c o d e M 7 M 6 M 5  M 3     
 p a r i t y          

 P 1 1 0 1 0 1 0 1   

 P 2 1 1 0 0 1 1 0   

 P 4 1 1 1 1 0 0 0   

 
We will assume that the parity bits are interleaved with the 

bits of the message M. To compute the parity bits, 

Hamming used the respective row for each. The values for 

P1 , P2 and P4 are given by the following equations where 

the symbol @ represents the exclusive or operation: 

 

P 1 = M 7 @ M 5 @ M 3 @  P 1 ( 2 ) 
P 2 = M 7 @ M 6 @ M 3 @  P 2 ( 3 ) 

P 4 = M 7 @ M 6 @ M 5 @  P 4 ( 4 ) 
 
Observe that the message bits used for computing a parity 
bit are the column headers of the nonzero entries on the 
row represented by that parity bit. If a column is without a 
header, it represents a parity bit that is associated with the 
column number. In the figure, columns 1, 2, and 4 are 

without headers, hence they represent parity bits P1, P2 

and P4. We assume an initial value of 0 for each parity bit 

to enable evaluation of these equations. Obviously, 
building a typical circuit to generate these parity bits 
would require 9 dual input exclusive or gates. In the next 
section we will introduceoptimization of the Hamming 

code. 

 
3. Optimized Hamming for the transmission 

end 
 
Our optimized Hamming approach depends on the 

nonzero bits in a code. It represents another way of 

computing the Hamming parity. At best, no computation is 

necessary and at worst, the number of operations is equal 

to that of the regular Hamming approach. For example, if 

only one bit in a message is equal to 1 then the parity for 

the whole message is given by the binary representation of 

the subscript of that message bit. On the other hand, if all 

the bits of a message are equal to one, then the number of 

operations needed to compute the parity is equal to the 

number of operations needed to compute the Hamming 

code. An example is given next to clarify these concepts. 
 
 
3.1 Computing the parity at the transmitting end 
 
Without loss of generality and for a message M = 

M7M6M5M3= 1010, we can compute P by simply 

 
performing bit-by-bit exclusive-or operations on the 

binary representation of the subscripts of the nonzero bits 

of M. 
 
Therefore,  P = M7@M5  

= 7 @ 5   
= 111 @ 101   
= 010  

 
The transmitted code (message and parity) will therefore 

be equal to: 
 
M7M6M5P4M3P2P1= 1010010 (5) 
 
We will discuss computing the error bits at the receiving 

end next. 
 
3.2 Computing the error bits at the receiving end 
 
At the receiving end, the same process is used but not for 

computing parity bits, rather it is used for computing error 

bits. First, we will review the Hamming equations for 

computing error bits. 
 
3.2.1 Hamming approach 
 

The error E = e1e2e3 is computed using the following 

equations: 
 
e 1 = P 4 @ M 5 @ M 6 @ M 7 ( 6 ) 
e 2 = P 2 @ M 3 @ M 6 @ M 7 ( 7 ) 

e 3 = P 1 @ M 3 @ M 5 @ M 7 ( 8 ) 
 
The next step is to use our optimized version of Hamming 

approach in computing the error bits. 
 
3.2.2 Optimized Hamming 
 
We will first consider the received code to be error free. 

Then the Right Hand Side (RHS) of equation (5) gives the 

following: 
M7@M5@P2= 000 

M5@P2  = M7 
M7 @P2  = M5 
M7 @M5 = P2 

 (9) 

(10) 

(11) 

(12) 
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Equation (9) includes only message and parity bit 

variables that are equal to 1 in the originally transmitted 

code. However, if any of the bits of the code is flipped 

during transmission, equation (9) will not be equal to 000. 

Remember, only message and parity bit variablesthat are 

equal to 1 were included in computing the parity at the 

transmitting end. 
 
Clearly, a single bit error would change a 0 to 1 or vice 

versa. If a 0 is changed to 1 then, M6, P4, M3or P1 would 

be exclusive or- ed with the Left Hand Side (LHS) of 
equation (9) at the receiving end. The result would give 
the binary equivalence of the subscript of the faculty bit on 
the RHS. Consequently, the RHS would be equal to the 
binary representation of the offending bit. On the other 
hand, if a 1 is toggled to 0 during transmission, then one of 

the original variables ( M7, M5, or P2) of equation (9) 

would not be included in the computation of the parity at 
the receiving end. Hence, the RHS of equation (9) would 
not be equal to 000. If we exclusiveor both sides of 

equation (9) withM7, M5,orP2, we willend up with 

equation (10), (11) or (12) respectively. The RHS of each 
of these equations gives the droppedvariable. The binary 
representation of the dropped variable gives the Hamming 
parity for the received code. 
 
In any case, the value on the RHS of equation (9) will 

either be equal to 000 or something else. Henceforth, these 

values are referred to as the error E. Once a gain, a 

 
 
comparison between equations 6, 7 and 8 on the one hand, 

and equations 9, 10, 11 and 12 on the other hand reveals 

the advantages of the optimized Hamming approach. 
 
 
Clearly, the error E may take the equivalence of any 

decimal value from 0 to 7. Therefore, the following 

conclusions can be drawn. 
 

1. If E is equal to 0 or equal to a power of 2, then no 

action should be taken and the received message 

section is intact.   
2. Otherwise the value of E will determine the 

subscript of the bit in M that should be flipped to 

restore the correct value.  
 
The next step is to introduce our proposed implementation 

of the optimized Hamming. However, we will furnish for 

that by a facilitating theorem right after analyzing the 

parity bits. 
 
4. Analysis of the parity bits 
 
The first row on Table 2 shows the decimal equivalence of 

the 16 possible combinations of 4 bit binary numbers. 

Each of the 16 possibilities represents a message. The 

second row shows the corresponding Hamming parity bits 

in their decimal digit forms. 
 

Table 2. Decimal equivalence of 4 bit codes and their parity bits 
 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 

0 3 5 6 6 5 3 0 7 4 2 1 1 2 4 7 

 
This table shows that the parity for a message represented 

by the number 3 is identical to that of a message 

represented by the number 4. The same conclusion is true 

about messages represented by the numbers 11 and 12. A 

closer look at the analysis of equations (10) through (12) 

will justify such equality. We will comment on two 

interesting observations here. The first is the equidistance 

between (3 and 11) on the one hand, and (4 and 12) on the 

other hand. This distance is equal to 2
n-1

 where n in this 

case is the number of bits  
(4). That is, if we replaced the Most Significant Bit (MSB) 

of the 4 bit binary code of the number 3 with the digit 1 we 

will end up with the number 11 and the same is true for the 

numbers 4 and 12. The second observation is that the 

parity for the number 3 (4) is the complement of the parity 

for the number 11 (12). Though trivial, these observations 

will be helpful in the presentation of the theorem. 

However, we will also need the following 

 
definitions before discussing the theorem: 
 
Definitions: 
 

1. S ( L) : The set of all codes of length L bits.  
2. SA (L): The subset of S ( L) that can be used 

torepresent the symbol A.   
3. C(j, k) : A code with j message bits and k paritybits 

where j +k = L. 

4. D(C
i
,C

j
) : The distance or number of bits in which 

C
i
and C

j
are different. 

5. 'b : The complement of a binary digit b.   

6. Mk: A message bit where k takes any value in 
thesequence 3, 5, 6, …, m of positive integers that 
are not powers of two.   

7. Parity mode: Defines the even or odd parity usedin 

computing the Hamming parity bits of a message.  
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We remind the reader that given any C

1
 and C

2
 in S (4), if 

C
1
 = 1011 and C

2
 = 0101, then D (C

1
, C

2
) = 3 because 

the three most significant bits are different. We also 
remind the reader of a well known coding theorem which 

states that: for any code space S (L), if D(C
i
,C

j
) >1 for 

every i and j, where i≠j, then the space is capable of 

detecting a single error. However, if D(C
i
,C

j
) > 2, then the 

space would be capable of correcting a single error and 
detecting two errors. Now we are ready to discuss the 
theorem. 
 
 
Theorem 
 
For any message M = Mm-1… M5M3, if: 

1.  The Hamming parity for M is equal to Pq… P4 
P2P1  

2. q is a power of two  
3. m is equal to 2

q
 – 1  

Then the parity for MmMm- 1… M5M3 would either be 

equal to Pq… P4P2P1 or 'Pq… 'P4'P2'P1 depending on 

the value of Mm being a 0 or a 1 respectively. 
 
To prove this theorem we need to show that if the distance 

between any pair of codes that are represented by Mm -1… 

M5M3Pq… P4P2P1 is at least 3 then:  
1. the distance between any pair of codes 

represented by 0Mm-1… M5M3Pq… P4P2P1 is 
at least 3.  

2. the distance between any pair of codes 

represented by 1Mm-1… M5M3Pq… P4P2P1 is 
at least 3.   

3. The distance between any code from the first 

group (1) and any code from the second (2) is   
also at least 3.  

These conditions simply imply that appending a 0 to the 

MSB of a code at the (2
q
 – 1)’s position will not 

changethe parity bits. On the other hand, appending a 1 at 
the same position will force the inversion of each of the 
parity bits. 
 
The simplest way to prove this theorem is by induction 

hypothesis. Since for a code to correct a single error, the 

distance D must be at least 3, it follows that the code must 

have a minimum length of 3 bits. However, for L equals 3, 

there are exactly two valid codes in the space S  
(3) that satisfy the minimum distance. In this case thecodes 

are C
1
 and C

2
 = 'C

1
. 

 
A legitimate question is as follows: why are there only two 

valid codes in S(3)? The answer is given in the following 

example. Given the space S(3) = { 000, 001, 010, 011, 

100, 101, 110, 111}, let us assume without loss of 

generality that the code C
1
 is encoded as 000. It 

 
 

follows that C
2
 would be encoded as 111. But what about 

the rest of the bit patterns of S(3) which are included 

between the following curl brackets {001,010,001,011,101 

and 110}? Here is the key for the answer. Assume that the 

letters A and B are encoded using C
1
 = 000 and C

2
 = 111 

respectively. Technically speaking, a receiver at the other 

end of transmission would recognize the letter A upon 

receiving any of the members of the subset SA(3) = {000, 

001,010, 001}. Similarly, the letter B would be recognized 

by a receiver if any of the members of SB(3) = {011,101, 

110, 111} is received. In both cases, receiving a boldfaced 

pattern implies no error had occurred, otherwise, receiving 

any of their subset mates implies that a single bit 

correctable error has occurred. 
 
Since L = 3 is not challenging enough, we will use a code 

with L = 4, or a C (1, 3) code. We will first prove that our 

hypothesis is true for L = 4. Then prove the hypothesis for 

L = 11 or C (4, 3) . Finally, we will assume that the 

hypotheses is true for L = m-1 and then prove it to be true 

for L = m, where m is greater than 11. 

 

Our C (1, 3), which can be represented by M3P4P2P1 is 

equal to 'M30M3M3 . This shows that there are only two 

valid codes in S (4); namely (0011) and (1000) according 

to our theorem. Obviously the distance between these two 

codes is 3, so, the hypothesis is true for C (1, 3). 
 
 
Our C (4, 3) is just another notation for Hamming code H 

(7, 4). The proof for C (4, 3) which is represented by 

M7M6M5M3P4P2P1is as follows: 
 
Assume the theorem is true for C (3, 3), that is, the 

minimum distance between any pair of codes represented 

by R1 = M6M5M3P4P2P1 is at least 3. Here, R1 
represents an S(6) code space. 
 
 
We will divide the proof into three parts. That is, we will 

prove that:  
1. D(C

i
,C

j
) > 2 where both C

i
and C

j
arerepresented 

by R2 = M6M5M3'P4'P2'P1 and i ≠j.  
2. D(C

i
,C

j
) > 2 where C

i
is represented by 

0M6M5M3P4P2P1and C
j
is represented by 

1M6M5M3'P4'P2'P1, and i can be equal to j.  
3. D(C

i
,C

j
) > 2  where C

i
= 0N6N5N3Q4Q2Q1and 

C
j
= 1M6M5M3'P4'P2'P1and i can be equal to 

j 
 
Part (1): To prove this part we need to examine R1.Since 

every pair of codes represented by R1 satisfies a 
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minimum distance of at least 3, it follows that R2 will also 
satisfy the minimum distance of at least 3. The reason is 

simple, the parity bits for R1= M6M5M3P4P2P1 which are 

given by P4P2P1, were originally computed using even 
(odd) parity mode. If we invert each of these parity bits, 
then we would get the parity mode changed to odd (even) 

and the message part of R1 along with the inverted parity 

bits would be equal to M6M5M3'P4'P2'P1. However, the 

distance between any pair of codes of the modified R1 

would still remain at least 3. Since the modified R1 is 

identical to R2, it follows that the distance between every 

pair of codes represented by R2 is also at least 3. 
 
Part (2): This part follows from the first. That 

is,appending M7 = 1 as the most significant digit to 

M6M5M3P4P2P 1results in a code that is equal to 

1M6M5M3P4P2P1. However, this code cannot retain 
boththe same parity bits and the original parity mode. 
Either the parity mode has to survive at the cost of 
inverting the parity bits or the parity bits have to survive at 
the cost of accepting the flipped parity mode. Since for 
our case the parity mode has to remain the same, we need 
to complement each of the Hamming parity bits. This 

proves that the two forms: 0M6M5M3P4P2P1 and  
1M6M5M3’P4’P2’P1 follow the same parity mode 
andthe distance between any code from the first and 
another from the second is at least 3. 
 
Part (3): For the last part, we have to consider thedistance 

between 1M6M5M3'P4'P2'P1 and 0N6N5N3Q4Q2Q1. If 

the distance between N6N5N3and M6M5M3is the 
minimum, that is, equals to 1, then weneed to show that 

the distance between Q4Q2Q1 and 'P4'P2'P1is at least 2. 
Without loss of generality, assume  
that: N6N5= M6M5; N3= 1; and M3=0. Hence, using the 
optimized Hamming approach we can compute the parity  
bits for M6M5M3 and N6N5N3 as M6@M5@000 

='P4'P2'P1and N6@N5@011= Q4Q2Q1respectively.  
Since: N6N5= M6M5 it follows that Q2Q1 would be equal 

to P2P1. Hence, the distance between the parity bits 

'P4'P2'P1and Q4Q2Q1is at least 2. This completes 
theproof for the case when the distance between the 
message bits is 1. When the distance between the message 
bits is 2 (or 3), a similar argument will prove that the 
distance between their respective parity bits is at least 1( or 
0). In any case, the overall distance (message 

 
 
+ parity) will always be at least 3. This completes the 

proof of the theorem. 
 
Corollary 1 
 
The parity bits for a Hamming code of length 2

n
– 1 can 

be obtained from the set of parity bits of the Hamming 

code of length 2
n-1

 – 1. 
 
Lemma 1 
 

For a Hamming code where c = m + p<2
p
 – 1, the parity 

for a message of length m bits can be computed from the 

parity of the least significant (m-1) message bits simply by 

performing exclusive-or operation of the bits of the 

number m with those of the parity bits for the (m-1) bits 

section. 
 
The proof follows directly from the proof of theorem 1, 

hence it is ignored. 
 
Corollary 2 
 
Our C(4,3) forms a basis from which any Hamming code 

of any length could be generated. 
 
These corollaries are helpful in situations where a lookup 

table has to be stored to avoid real time computation. 

Instead of storing all the message and parity bits of a large 

Hamming code, one can simply store the table for C (4, 3) 

and then generate the required code size on real time quite 

easily. In the next section we will discuss the advantages 

of using C (4, 3) as basis. 
 
5. The H (7, 4) as basis 
 
Figure 1 show an implementation of our C(4,3) code. One 

can easily verify that this figure is consistent with the 

proposed theorem since the second level exclusive or gates 

will either pass or invert the outputs of the first level 

exclusive or gates depending on the value of M7. 

Expectedly, the first level gates produce the parity bits for 

codes with up to three message bits. It is important to 

assume that the default value for an input line is logical 

zero. 
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Figure 1. Exclusive Or Implementation of the H(7,4) Code 
 
As discussed earlier, the implementation of an H(7,4) with 
dual input exclusive or gates will require 9 gates compared 
to only 6 in figure 1. That is a saving of 33%. We can 
achieve a better design with only 1exclusive or gate and 5 
inverters as shown in figure 2. The parity bits can be 
computed for two, three and four message bits. In the first 

stage we start with only two message bits M3 and M5 and 

show the required circuit. We then add M6 in 

 
the second stage followed by M7 in the third. The addition 

of M6 will enable the inverters to toggle P4 and P2when 

M6is equal to 1. When M6is equal to 0 noinversion takes 

place. Similarly, on the last stage, the addition of M7 

would flip all three parity bits when M7 is equal to 1. 
Otherwise, no inversion takes place. The figure assumes 

both M6 and M7 to be equal to 1. 
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2  message  b i t s           P 4  P 2  P 1 
                  

                  

Adding a  th i rd 
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Figure 2. Incremental Implementation of the Hamming code 
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6. Conclusion 
 
A standard implementing of a hamming code has been 

introduced. The implementation relies on initial building a 

seed circuit for a smaller size code so incrementally adding 

message bits as necessary. Such approach provides flexibility 

to each hardware and software package designers. 

Moreover, progressive addition of message bits provides 

savings in electronic equipmentthat's directly proportional 

to the dimensions of the meantacting code. The paper 

incontestiblea discount of thirty third in electronic 

equipmentonceprogressive approach is employed for the 

H(7,4) case. what is more, in thingswherever a acting table 

must be store, the projectedimprovementallows storing 

solely the seed thereby saving cupboard space. 
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