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ABSTRACT: 

MapReduce programming framework process 

large amount of data by taking advantage of 

parallel Map and Reduce tasks. Computationally 

MapReduce has two phases called Map and 

Reduce. In actual implementation, it has another 

phase called Shuffle where data transfer takes 

place. Conventionally Shuffle phase use Hash 

function to partition data which is inefficient in 

handling Traffic leading to a bottleneck. 

Improving the performance of network traffic 

inshuffle phase is important to improve the 

performance of MapReduce. The goal of 

minimization of network traffic is achieved by 

using partition and aggregation. The proposed 

scheme is designed to minimize network traffic 

cost in MapReduce. The problem of aggregator 

placement is considered, where each aggregator 

can reduce combined traffic from multiple map 

tasks.A decomposition-based distributed 

algorithm is proposed to deal with the large-

scale optimization problem for big data 

applications. Also, an  

online algorithm is designed to dynamically 

adjust data partition and aggregation 

 

INTRODUCTION  

Big Data has emerged as a widely recognized 

trend, attracting attentions from government, 

industry and academia. Generally speaking, Big 

Data concerns large-volume, complex, growing 

data sets with multiple, autonomous sources. The 

major challenge for the Big Data applications is 

to process the large volumes of data and extract 

useful information for future actions. 

MapReduce has appeared as the very popular 

calculating framework for big data processing 

appropriate to its simple programming model and 

automatic parallel execution. MapReduce and 

Hadoop have been used by many big companies, 

such as Yahoo!, Google and Facebook, 

fordifferent big data applications. In MapReduce 

[1][2], computation is viewed as consisting of 

two phases, called `map' and `reduce' 

respectively. In the map phase, data is 

reorganized in such a manner that the desired 

computation can then be achieved by uniformly 

applying one algorithm on small portions of the 

data. The second phase in MapReduce is called 
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the reduce phase. As each of these two phases 

can achieve massive parallelism, MapReduce 

systems can exploit the large amount of 

computing power by huge scale clusters. When 

understanding the performance of MapReduce 

systems, it is convenient to view a MapReduce 

job as consisting of three phases rather than two 

phases. The additional phase, which is 

considered between the map phase and the 

reduce phase, is a data transfer phase called the 

`shuffle' phase. In the shuffle phase, the output of 

the map phase is recombined and then transferred 

to the compute nodes that are scheduled to 

perform corresponding reduce operations. The 

performance of MapReduce systems 

clearlydepends heavily on the scheduling of tasks 

belonging to thesethree phases. Even though 

many efforts have been made to improve 

theperformance of MapReduce jobs, they show 

blind eye to thenetwork traffic generated in the 

shuffle phase, which plays acrucial role in 

performance enhancement. In traditional way, 

ahash function is used to partition intermediate 

data amongreduce tasks, which, however, is not 

traffic-efficient because we don’t consider 

network topology and data size associated with 

each key. In this paper, by designing a novel 

intermediate data partition scheme we reduce 

network traffic cost for a MapReduce job. 

Configuring the job, submitting it, controlling its 

execution, and querying the state is allowed to 

user by Hadoop. Each and every job consists of 

independent tasks, and all the tasks need to have 

a system slot to run. All scheduling and 

allocation decisions in Hadoop are made on a 

task and node slot level for both the map and 

reduce phases. The Hadoop scheduling model is 

a Master/Slave cluster structure. The master node 

(Job Tracker) coordinates the worker machines 

(Task Tracker). Job Tracker is a process which 

manages jobs, and Task Tracker is a process 

which manages tasks on adjacent nodes. The 

scheduler resides in the Job tracker and allocates 

to Task Tracker various resources to running 

tasks: Map and Reduce tasks are granted 

independent slots on each machine. MapReduce 

Scheduling system takes on in six steps: First, 

User program divides the MapReduce job. 

Second, master node distributes MapTasks and 

ReduceTasks to different workers. Third, 

MapTasks reads in the data splits, and runs 

mapfunction on the data which is read in. fourth, 

MapTasks write intermediate results into local 

disk. Then, ReduceTasks read the intermediate 

results remotely, and run reduce function on the 

intermediate results which are read in.  

 

II. RELATED WORK  
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1. “Map Task Scheduling in MapReduce with 

Data Locality: Throughput and Heavy-Traffic 

Optimality” [2] While assigning map tasks, a 

critical consideration is to place map tasks on or 

close to machines that store the chunks of input 

data, a problem is called data locality. For each 

and every task, we call a machine a local 

machine for the task if the data chunk associated 

with the task is stored locally, and this task is 

called local task on the machine; the machine is 

called a remote machine for the task and 

correspondingly this task is called a remote task 

on the machine. We need to achieve the right 

balance between data locality and load-balancing 

in MapReduce algorithm thatallocates map tasks 

to machines a map-scheduling algorithm or 

simply a scheduling algorithm is used.  

2. “Zput: a speedy data uploading approach for 

the Hadoop Distributed File System”[4] The 

main motive of Zput is remapping files in the 

native file system directly into thenamespace of 

HDFS, which are disguised as HDFS blocks. To 

overcome the unbalanced data distribution 

problem, we implement the mechanism to 

replicate blocks remotely based on Zput, whose 

only goal is to achieve a more balanced and 

efficient distribution for data blocks.  

3. “Online aggregation and continuous query 

support in MapReduce,” [8] This extends the 

MapReduceprogramming model beyond batch 

processing, and can reduce completion times and 

improve system utilization for batch jobs as well. 

A modified version of the Hadoop MapReduce 

framework that supports online aggregation is 

demonstrated, which allows users to see “early 

returns” from a job as it is being computed.  

4. “Purlieus: Locality aware resource allocation 

for mapreduce in a cloud” [10], describe locality 

awareness during both Map and Reduce phases. 

Thislocality-awareness during bothmap and 

reduce phases of thejob not only improves 

runtimeperformance of individual jobs butalso 

has an additional advantageof reducing network 

trafficgenerated.  

5. “Camdoop: Exploiting in-network aggregation 

for big data applications” [12], Camdoop exploits 

the property that CamCube servers forward 

traffic to perform in-network aggregation of data 

during the shuffle phase. Camdoop supports the 

same functions used in MapReduce and is 

compatible with existing MapReduce 

applications. We demonstrate that, in common 

cases, Camdoop significantly reduces the 

network traffic and provides high performance 

increase over a version of Camdoop. 

 6. “Hadoop acceleration in an open flow-based 

cluster,” present detailed study of how Hadoop 
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can control its network resources using 

OpenFlow in order to improve performance.  

7. “Comprehensive View of Hadoop MapReduce 

SchedulingAlgorithms” The Scheduling is one of 

the most critical aspects of MapReduce because 

of the important issues that wedescribed, and 

many more problems in scheduling of 

MapReduce. To overcome these issues with 

different techniques and approaches many 

algorithms are presented and studied. Some of 

these algorithm focuses toimprovement data 

locality and some of them implements to provide 

Synchronization processing.Many of these 

algorithms have been designed to minimize the 

total completion time. Some of these algorithms 

are FIFO scheduling algorithm, Fair Scheduling 

Algorithm, Capacity scheduler, hybrid scheduler 

based on dynamic priority, etc. Each has its own 

advantages and disadvantages. 

III. PROPOSED SYSTEM  

A. Design Considerations To reduce network 

traffic within a MapReduce job, we have to 

consider aggregate data with similar keys before 

sending them to remote reduce tasks. Even 

though we have a similar function, called 

combiner, which has been already adopted by 

Hadoop, it operates immediately after a map task 

solely for its generated data, failing to exploit the 

data aggregation opportunities among multiple 

tasks on different machines. Objective is to 

minimize the total network traffic by Data 

partition and aggregation for a MapReduce job. 

Distributed algorithm is proposed for big data 

applications by decomposing the original large-

scale problem into several subproblems and these 

subproblems can be solved in parallel. Another is 

online algorithm which is also designed to deal 

with the data partition and aggregation in a 

dynamic manner. 

 B. System Architecture 

 

The incoming big data from data generators is 

received by the Job Manager where it is 

partitioned and Map/Reduce Tasks are carried 

out. The data is portioned and stored on the 

nodes by using load balancing techniques to 

minimize traffic. The Clients ask queries to the 

system.  

IV.CONCLUSION AND FUTURE WORK 

The joint optimization of intermediate data 
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partition and aggregation in MapReduce to 

minimize network traffic cost for big data 

applications is studied. The technique of load 

balancing is used to reduce traffic. Furthermore, 

we plan to extend our algorithm to handle the 

MapReduce job in an online manner when some 

system parameters are not given. Finally, we will 

conduct extensive simulations to evaluate our 

proposed algorithm under both offline cases and 

online cases. 
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