

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1333

A Study Of Traffic Aware Partition And Aggregation In
Mapreduce For Big Data Applications

Lade Praveenkumar & Gugulothu Praveen
*Pg Scholar,Department Of Cnis, Vaagdevi College Of Engineering Bollikunta,Warangal,Telangana

** Asst. Professor, Department Of Cse, Vaagdevi College Of Engineering Bollikunta,Warangal,Telangana

ABSTRACT:

MapReduce programming framework process

large amount of data by taking advantage of

parallel Map and Reduce tasks. Computationally

MapReduce has two phases called Map and

Reduce. In actual implementation, it has another

phase called Shuffle where data transfer takes

place. Conventionally Shuffle phase use Hash

function to partition data which is inefficient in

handling Traffic leading to a bottleneck.

Improving the performance of network traffic

inshuffle phase is important to improve the

performance of MapReduce. The goal of

minimization of network traffic is achieved by

using partition and aggregation. The proposed

scheme is designed to minimize network traffic

cost in MapReduce. The problem of aggregator

placement is considered, where each aggregator

can reduce combined traffic from multiple map

tasks.A decomposition-based distributed

algorithm is proposed to deal with the large-

scale optimization problem for big data

applications. Also, an

online algorithm is designed to dynamically

adjust data partition and aggregation

INTRODUCTION

Big Data has emerged as a widely recognized

trend, attracting attentions from government,

industry and academia. Generally speaking, Big

Data concerns large-volume, complex, growing

data sets with multiple, autonomous sources. The

major challenge for the Big Data applications is

to process the large volumes of data and extract

useful information for future actions.

MapReduce has appeared as the very popular

calculating framework for big data processing

appropriate to its simple programming model and

automatic parallel execution. MapReduce and

Hadoop have been used by many big companies,

such as Yahoo!, Google and Facebook,

fordifferent big data applications. In MapReduce

[1][2], computation is viewed as consisting of

two phases, called `map' and `reduce'

respectively. In the map phase, data is

reorganized in such a manner that the desired

computation can then be achieved by uniformly

applying one algorithm on small portions of the

data. The second phase in MapReduce is called

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1334

the reduce phase. As each of these two phases

can achieve massive parallelism, MapReduce

systems can exploit the large amount of

computing power by huge scale clusters. When

understanding the performance of MapReduce

systems, it is convenient to view a MapReduce

job as consisting of three phases rather than two

phases. The additional phase, which is

considered between the map phase and the

reduce phase, is a data transfer phase called the

`shuffle' phase. In the shuffle phase, the output of

the map phase is recombined and then transferred

to the compute nodes that are scheduled to

perform corresponding reduce operations. The

performance of MapReduce systems

clearlydepends heavily on the scheduling of tasks

belonging to thesethree phases. Even though

many efforts have been made to improve

theperformance of MapReduce jobs, they show

blind eye to thenetwork traffic generated in the

shuffle phase, which plays acrucial role in

performance enhancement. In traditional way,

ahash function is used to partition intermediate

data amongreduce tasks, which, however, is not

traffic-efficient because we don’t consider

network topology and data size associated with

each key. In this paper, by designing a novel

intermediate data partition scheme we reduce

network traffic cost for a MapReduce job.

Configuring the job, submitting it, controlling its

execution, and querying the state is allowed to

user by Hadoop. Each and every job consists of

independent tasks, and all the tasks need to have

a system slot to run. All scheduling and

allocation decisions in Hadoop are made on a

task and node slot level for both the map and

reduce phases. The Hadoop scheduling model is

a Master/Slave cluster structure. The master node

(Job Tracker) coordinates the worker machines

(Task Tracker). Job Tracker is a process which

manages jobs, and Task Tracker is a process

which manages tasks on adjacent nodes. The

scheduler resides in the Job tracker and allocates

to Task Tracker various resources to running

tasks: Map and Reduce tasks are granted

independent slots on each machine. MapReduce

Scheduling system takes on in six steps: First,

User program divides the MapReduce job.

Second, master node distributes MapTasks and

ReduceTasks to different workers. Third,

MapTasks reads in the data splits, and runs

mapfunction on the data which is read in. fourth,

MapTasks write intermediate results into local

disk. Then, ReduceTasks read the intermediate

results remotely, and run reduce function on the

intermediate results which are read in.

II. RELATED WORK

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1335

1. “Map Task Scheduling in MapReduce with

Data Locality: Throughput and Heavy-Traffic

Optimality” [2] While assigning map tasks, a

critical consideration is to place map tasks on or

close to machines that store the chunks of input

data, a problem is called data locality. For each

and every task, we call a machine a local

machine for the task if the data chunk associated

with the task is stored locally, and this task is

called local task on the machine; the machine is

called a remote machine for the task and

correspondingly this task is called a remote task

on the machine. We need to achieve the right

balance between data locality and load-balancing

in MapReduce algorithm thatallocates map tasks

to machines a map-scheduling algorithm or

simply a scheduling algorithm is used.

2. “Zput: a speedy data uploading approach for

the Hadoop Distributed File System”[4] The

main motive of Zput is remapping files in the

native file system directly into thenamespace of

HDFS, which are disguised as HDFS blocks. To

overcome the unbalanced data distribution

problem, we implement the mechanism to

replicate blocks remotely based on Zput, whose

only goal is to achieve a more balanced and

efficient distribution for data blocks.

3. “Online aggregation and continuous query

support in MapReduce,” [8] This extends the

MapReduceprogramming model beyond batch

processing, and can reduce completion times and

improve system utilization for batch jobs as well.

A modified version of the Hadoop MapReduce

framework that supports online aggregation is

demonstrated, which allows users to see “early

returns” from a job as it is being computed.

4. “Purlieus: Locality aware resource allocation

for mapreduce in a cloud” [10], describe locality

awareness during both Map and Reduce phases.

Thislocality-awareness during bothmap and

reduce phases of thejob not only improves

runtimeperformance of individual jobs butalso

has an additional advantageof reducing network

trafficgenerated.

5. “Camdoop: Exploiting in-network aggregation

for big data applications” [12], Camdoop exploits

the property that CamCube servers forward

traffic to perform in-network aggregation of data

during the shuffle phase. Camdoop supports the

same functions used in MapReduce and is

compatible with existing MapReduce

applications. We demonstrate that, in common

cases, Camdoop significantly reduces the

network traffic and provides high performance

increase over a version of Camdoop.

 6. “Hadoop acceleration in an open flow-based

cluster,” present detailed study of how Hadoop

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1336

can control its network resources using

OpenFlow in order to improve performance.

7. “Comprehensive View of Hadoop MapReduce

SchedulingAlgorithms” The Scheduling is one of

the most critical aspects of MapReduce because

of the important issues that wedescribed, and

many more problems in scheduling of

MapReduce. To overcome these issues with

different techniques and approaches many

algorithms are presented and studied. Some of

these algorithm focuses toimprovement data

locality and some of them implements to provide

Synchronization processing.Many of these

algorithms have been designed to minimize the

total completion time. Some of these algorithms

are FIFO scheduling algorithm, Fair Scheduling

Algorithm, Capacity scheduler, hybrid scheduler

based on dynamic priority, etc. Each has its own

advantages and disadvantages.

III. PROPOSED SYSTEM

A. Design Considerations To reduce network

traffic within a MapReduce job, we have to

consider aggregate data with similar keys before

sending them to remote reduce tasks. Even

though we have a similar function, called

combiner, which has been already adopted by

Hadoop, it operates immediately after a map task

solely for its generated data, failing to exploit the

data aggregation opportunities among multiple

tasks on different machines. Objective is to

minimize the total network traffic by Data

partition and aggregation for a MapReduce job.

Distributed algorithm is proposed for big data

applications by decomposing the original large-

scale problem into several subproblems and these

subproblems can be solved in parallel. Another is

online algorithm which is also designed to deal

with the data partition and aggregation in a

dynamic manner.

 B. System Architecture

The incoming big data from data generators is

received by the Job Manager where it is

partitioned and Map/Reduce Tasks are carried

out. The data is portioned and stored on the

nodes by using load balancing techniques to

minimize traffic. The Clients ask queries to the

system.

IV.CONCLUSION AND FUTURE WORK

The joint optimization of intermediate data

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1337

partition and aggregation in MapReduce to

minimize network traffic cost for big data

applications is studied. The technique of load

balancing is used to reduce traffic. Furthermore,

we plan to extend our algorithm to handle the

MapReduce job in an online manner when some

system parameters are not given. Finally, we will

conduct extensive simulations to evaluate our

proposed algorithm under both offline cases and

online cases.

REFERENCES

 [1] J. Dean and S. Ghemawat, “Mapreduce:

simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp.

107–113, 2008.

 [2] W. Wang, K. Zhu, L. Ying, J. Tan, and L.

Zhang, “Map task scheduling in mapreduce with

data locality: Throughput and heavy-traffic

optimality,” in INFOCOM, 2013 Proceedings

IEEE. IEEE, 2013, pp. 1609–1617.

 [3] F. Chen, M. Kodialam, and T. Lakshman,

“Joint scheduling of processing and shuffle

phases in mapreduce systems,” in INFOCOM,

2012 Proceedings IEEE. IEEE, 2012, pp. 1143–

1151.

 [4] Y. Wang, W. Wang, C. Ma, and D. Meng,

“Zput: A speedy data uploading approach for the

hadoop distributed file system,” in Cluster

Computing (CLUSTER), 2013 IEEE

International Conference on. IEEE, 2013, pp. 1–

5.

[5] T. White, Hadoop: the definitive guide: the

definitive guide.” O’Reilly Media, Inc.”, 2009.

[6] S. Chen and S. W. Schlosser, “Map-reduce

meets wider varieties of applications,” Intel

Research Pittsburgh, Tech. Rep. IRP-TR-08-05,

2008.

[7] F. Ahmad, S. Lee, M. Thottethodi, and T.

Vijaykumar, “Mapreduce with communication

overlap,” pp. 608–620, 2013.

[8] T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy,

and R. Sears, “Online aggregation and

continuous query support in mapreduce,” in

Proceedings of the 2010 ACM SIGMOD

International Conference on Management of

data. ACM, 2010, pp. 1115–1118.

[9] A. Blanca and S. W. Shin, “Optimizing

network usage in mapreduce scheduling.”

[10] B. Palanisamy, A. Singh, L. Liu, and B.

Jain, “Purlieus: localityaware resource allocation

for mapreduce in a cloud,” in Proceedings of

2011 International Conference for High

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1338

Performance Computing, Networking, Storage

and Analysis. ACM, 2011, p. 58..

[11] T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, K. Elmeleegy, and R. Sears,

“Mapreduce online.” in NSDI, vol. 10, no. 4,

2010, p. 20.

[12] P. Costa, A. Donnelly, A. I. Rowstron, and

G. O’Shea, “Camdoop: Exploiting in-network

aggregation for big data applications.” in NSDI,

vol. 12, 2012, pp. 3–3.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

