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Abstract: Multiplication is one of the 

basic functions used in digital signal 

processing (DSP). Due to its high 

modularity and carry-free addition, a 

redundant binary (RB) representation can 

be used when designing high 

performance multipliers. The 

conventional RB multiplier requires an 

additional RB partial product (RBPP) 

row, because an error-correcting word 

(ECW) is generated by both the radix-4 

Modified Booth encoding (MBE) and the 

RB encoding. 

 

 This incurs in an additional RBPP 

accumulation stage for the MBE 

multiplier. In this paper, a new RB 

modified partial product generator 

(RBMPPG) is proposed; it removes the 

extra ECW and hence, it saves one RBPP 

accumulation stage. Therefore, the 

proposed RBMPPG generates fewer 

partial product rows than a conventional 

RB MBE multiplier. Simulation results 

show that the proposed RBMPPG based 

designs significantly improve the area 

and High speed when the word length of 

each operand in the multiplier is at least 

32 bits; these reductions over previous 

NB multiplier designs incur in  

 

 

 

a modest delay increase. The delay can be 

reduced using the proposed RB 

multipliers when compared with existing 

RB multipliers. 

 

Index Terms- Redundant binary modified 

booth encoding, RB partial product 

generator, RB multiplier. 

 

1 INTRODUCTION  

 

Digital multipliers are widely used in 

arithmetic units of microprocessors, 

multimedia and digital signal processors. 

Many algorithms and architectures have 

been proposed to design high-speed and 

low-power multipliers. A normal binary 

(NB) multiplication by digital circuits 

includes three steps. In the first step, 

partial products are generated; in the 

second step, all partial products are added 

by a partial product reduction tree until 

two partial product rows remain. In the 

third step, the two partial product rows 

are added by a fast carry propagation 

adder. Two methods have been used to 

perform the second step for the partial 

product reduction. A first method uses 

four-two compressors, while a second 

method uses redundant binary (RB) 

numbers. Both methods allow the partial 

product reduction tree to be reduced at a 

rate of 2:1.  
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The redundant binary number 

representation has been introduced by 

Avizienis to perform signed-digit 

arithmetic; the RB number has the 

capability to be represented in different 

ways. Fast multipliers can be designed 

using redundant binary addition trees. 

The redundant binary representation has 

also been applied to a floating-point 

processor and implemented in VLSI. 

High performance RB multipliers have 

become popular due to the advantageous 

features, such as high modularity and 

carry-free addition.  

 

A RB multiplier consists of a RB partial 

product (RBPP) generator, a RBPP 

reduction tree and a RB-NB converter. A 

Radix-4 Booth encoding or a modified 

Booth encoding (MBE) is usually used in 

the partial product generator of parallel 

multipliers to reduce the number of 

partial product rows by half. A RBPP row 

can be obtained from two adjacent NB 

partial product rows by inverting one of 

the pair rows an N-bit conventional RB 

MBE (CRBBE-2) multiplier requires 

[N/4] RBPP rows. An additional error-

correcting word (ECW) is also required 

by both the RB and the Booth encoding 

therefore, the number of RBPP 

accumulation stages (NRBPPAS) 

required by a power-of-two word-length 

(i.e., 2
n
-bit) multiplier is given by: 

 

 

       
(1) 

 

 

If the additional ECW can be removed, 

an RBPP accumulation stage is saved, so 

resulting in improvements of complexity 

and critical path delay for a RB 

multiplier. For example, a conventional 

32- bit RB multiplier has four RBPP 

accumulation stages; if the ECW is 

removed, then the number of RBPP 

accumulation stages is reduced to 3, i.e., 

the stage count is decreased by 25 

percent. Note that the problem of extra 

ECW does not exist in standard 

significant size (i.e., 24x24-bit and 5454-

bit) RB multipliers as used in floating 

point-arithmetic units. 

 

Alternatively, a high-radix Booth 

encoding technique can reduce the 

number of partial products. However, the 

number of expensive hard multiples (i.e., 

a multiple that is not a power of two and 

the operation cannot be performed by 

simple shifting and/or complementation) 

increases too. Besli and Desmukh  

noticed that some hard multiples can be 

obtained by the differences of two simple 

power-of-two multiplies. A new radix-16 

Booth encoding (RBBE-4) technique 

without ECW has been proposed in it 

avoids the issue of hard multiples. A 

radix-16 RB Booth encoder can be used 

to overcome the hard multiple problem 

and avoid the extra ECW, but at the cost 

of doubling the number of RBPP rows. 

Therefore, the number of radix-16 RBPP 

rows is the same as in the radix-4 MBE. 

However, the RBPP generator based on a 

radix-16 Booth encoding has a complex 

circuit structure and a lower speed 

compared with the MBE partial product 

generator when requiring the same 

number of partial products. 

 

This paper focuses on the RBPP 

generator for designing a 2n-bit RB 

multiplier with fewer partial product rows 

by eliminating the extra ECW. A new RB 

modified partial product generator based 

on MBE (RBMPPG-2) is proposed. In 

the proposed RBMPPG-2, the ECW of 

each row is moved to its next neighbor 

row. Furthermore, the extra ECW 
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generated by the last partial product row 

is combined with both the two most 

significant bits (MSBs) of the first partial 

product row and the two least significant 

bits (LSBs) of the last partial product row 

by logic simplification. Therefore, the 

proposed method reduces the number of 

RBPP rows from N=4 þ 1 to N=4, i.e., a 

RBPP accumulation stage is saved. The 

proposed method is applied to 8x8-, 

16x16- and 32x32-bit RB multiplier 

designs; the designs are synthesized and 

simulated on Xilinx ISE. The proposed 

designs achieve significant reductions in 

compared with existing multipliers when 

the word length of each of the operands is 

at least 32 bits. While a modest increase 

in delay is encountered (approximately 5 

percent).   

 

This paper is organized as follows. 

Section 2 introduces radix-4 Booth 

encoding. The design of the conventional 

RBPP generator is also reviewed. Section 

3 presents the proposed RBMPPG. This 

section also demonstrates the adoption of 

the proposed RBMPPG into various 

word-length RB multipliers. Section 4 

provides the evaluation results of the new 

RB multipliers using the proposed 

RBMPPG for different word lengths and 

compares them to previous best designs 

found in the technical literature. The 

conclusion is provided in Section 5. 

 

 

2. EXISTING BOOTH MULTIPLIER 

 

2.1 Non-Redundant Radix-4 Signed-Digit 

Algorithm 

 

 
 

Fig.2.1. Block diagram of the NR4SD 

encoding scheme at the (a) digit and (b) 

word level. 

 

 
 

Fig.2.2. Block diagram of the NR4SDþ 

encoding scheme at the (a) digit and (b) 

word level. 

 

 Step1. Consider the initial values j =0 

and c0 =0.  

Step2. Calculate the carry c2j+1 and the 

sum n
+

2j of a half adder (HA) with inputs 

b2j and c2j (Fig.2. 

1a).  
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Step3. Calculate the positively signed 

carry c2j+2 (+) and the negatively signed 

sum n 2j+1 (-) of a HA* with inputs b2j+1 

(+) and c2j+1 (+) (Fig.3.1a). The outputs 

c2j+2 and n 2j+1 of the HA* relate to its 

inputs as follows: 

 

 
 

The following Boolean equations 

summarize the HA* operation: 

 

 
 

Step 4. Calculate the value of the b
NR-

j 

digit. 

 

  
    

 ……. (2.5) 

 

Equation (5) results from the fact that n
-

2j+1 is negatively signed and n
+
2j is 

positively signed. 

Step5. j :=j + 1. 

 Step6. If If (j < k_ 1), go to Step 2. If (j = 

k -1), encode the most significant digit 

based on the MB algorithm and 

considering the three consecutive bits to 

be b2k-1, b2k-2 and c2k-2 (Fig.2.1b). If 

(j = k), stop. 

 

 

Equations (6) show how the NR4SD
-
 

encoding signals one
+
 j, one

-
 j and two

-
j of 

Table 2.2 are generated. 

 

 …….. (2.6) 

 

The minimum and maximum limits of the 

dynamic range in the NR4SD
- 
form are -

2
n-1

 -2
n-3

 -2
n-5

 -…-2 < -2n-1 and 2n-1 + 

2n-4 + 2n-6 +…. +1 > 2
n-1

 - 1. We 

observe that the NR4SD
- 
form has larger 

dynamic range than the 2‘s complement 

form. 

 

2.1.1 NR4SDþ Algorithm  

 

Step1. Consider the initial values j = 0 

and c0 =0. 

 Step2. Calculate the positively signed 

carry c2j+1 (+) and the negatively signed 

sum n
-
2j (-) of a           HA* with inputs 

b2j (+) and c2j (+) (Fig. 2a). The carry 

c2j+1 and the sum n
-
2j of the HA* relate to 

its inputs as follows: 

 

 
 

The outputs of the HA* are analyzed at 

gate level in the following equations: 

 

 
 

Step3. Calculate the carry c2j+2 and the 

sum n
+
 2j+1 of a HA with inputs b2j+1 and 

c2j+1. 

 

 
 

Step4. Calculate the value of the b
NR+ 

j 

digit 

 

 ……. (2.7) 

 

Step5. j := j + 1. 

 Step 6. If (j < k_-1), go to Step 2. If (j = 

k - 1), encode the most significant digit 

according to MB algorithm and 

considering the three consecutive bits to 

be b2k-1, b2k-2 and c2k-2 (Fig.2.2b). If 

(j =k), stop. 

                           

Equations (8) show how the NR4SDþ 

encoding signals one
+
 j, one 

-
j and two

+
 j 

of Table 2.3 are generated. 
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    ….. (2.8) 

The minimum and maximum limits of the 

dynamic range in the NR4SDþ form are -

2
n-1 

-2
n-4 

- 2
n-6

 -… -1 < -2
n-1 

and 2
n-1 

+ 2
n-3 

+ 2
n-5 

+…. +2 > 2
n-1 

- 1. As observed in 

the NR4SD_ encoding technique, the 

NR4SDþ form has larger dynamic range 

than the 2‘s complement form. 

 

Considering the 8-bit 2‘s complement 

number N, Table 2.4 exposes the limit 

values -2
8
 = -128, 2

8
 - 1 = 127, and two 

typical values of N, and presents the MB, 

NR4SD_ and NR4SDþ digits that result 

when applying the corresponding 

encoding techniques to each value of N 

we considered. We added a bar above the 

negatively signed digits in order to 

distinguish them from the positively 

signed ones. 

 

2.2 Pre-Encoded Multipliers Design:  

 

 In this section, we explore the 

implementation of pre-encoded 

multipliers. One of the two inputs of 

these multipliers is pre-encoded either in 

MB or in NR4SD
-
/NR4SD

+
 

representation. We consider that this 

input comes from a set of fixed 

coefficients (e.g., the coefficients for a 

number of filters in which this multiplier 

will be used in a dedicated system or the 

sine table required in an FFT 

implementation).The coefficients are 

encoded off-line based on MB or NR4SD 

algorithms and the resulting bits of 

encoding are stored in a ROM. Since our 

purpose is to estimate the efficiency of 

the proposed multipliers, we first present 

a review of the conventional MB 

multiplier in order to compare it with the 

pre-encoded schemes. 

 

 
 

Fig.2.3. System architecture of the 

conventional MB multiplier. 

 

2.2.1 Conventional MB Multiplier:  

 

 Fig. 2.3 presents the architecture of the 

system which comprises the conventional 

MB multiplier and the ROM with 

coefficients in 2‘s complement form. Let 

us consider the multiplication A •B. The 

coefficient B =(bn_1 . . . b0)2‘s consists of n 

= 2k bits and is driven to the MB 

encoding blocks from a ROM where it is 

stored in 2‘s complement form. It is 

encoded according to the MB algorithm 

(Section 2) and multiplied by A =(an_1 . . . 

a0)2‘s, which is in 2‘s complement 

representation. We note that the ROM 

data bus width equals the width of 

coefficient B (n bits) and that it outputs 

one coefficient on each clock cycle. 

The k partial products are generated as 

follows: 

     

 …….. (2.9) 

 The generation of the ith bit pj,i of the 

partial product PPj is illustrated at gate 

level in Fig.  [6], [7]. For the computation 
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of the least and most significant bits of 

PPj , we consider a-1 = 0 and an = an-1, 

respectively. 

After shaping the partial products, they 

are added, properly weighted, through a 

carry save adder (CSA) tree along with 

the correction term (COR): 

 

 
    

 ……………. (2.10) 

     

 ……. (2.11) 

 

Where cin,j = (onej  twoj)  sj (Table 

1). The CS output of the tree is leaded to 

a fast carry look ahead (CLA) adder [19] 

to form the final result P ¼=A • B 

(Fig.2.3). 

 

2.2.2 Pre-Encoded MB Multiplier 

Design: 

 

 In the pre-encoded MB multiplier 

scheme, the coefficient B is encoded off-

line according to the conventional MB 

form (Table 1). The resulting encoding 

signals of B are stored in a ROM. The 

circled part of Fig. 2.3, which contains 

the ROM with coefficients in 2‘s 

complement form and the MB encoding 

circuit, is now totally replaced by the 

ROM of Fig. 2.5. The MB encoding 

blocks of Fig. 2.3 are omitted. The new 

ROM of Fig. 2.5 is used to store the 

encoding signals of B and feed them into 

the partial product generators (PPj 

Generators—PPG) on each clock cycle. 

 

 Targeting to decrease switching activity, 

the value ‗1‘ of sj in the last entry of 

Table 1 is replaced by ‗0‘. The sign sj is 

now given by the relation: 

 

 
     

 ……… (2.12) 

 

 As a result, the PPG of Fig. 3.4a is 

replaced by the one of Fig. 3.4b. 

Compared to (4), (12) leads to a more 

complex design. However, due to the pre-

encoding technique, there is no area/delay 

overhead at the circuit. 

 

 
 

Fig.2.4. Generation of the ith Bit pj,i of 

PPj for a) Conventional, b) Pre-Encoded 

MB Multipliers, c) NR4SD
-
, d) NR4SD

+
 

Pre-Encoded Multipliers, and e) NR4SD
-
, 

f) NR4SD
+
 Pre-Encoded Multipliers after 

reconstruction. 

 

 The partial products, properly weighted, 

and the COR of (11) are fed into a CSA 

tree. The input carry cin; j of (11) is 

computed as cin;j ¼ sj based on (12) and 

Table 2.1. The CS output of the tree is 

finally merged by a fast CLA added. 

However, the ROM width is increased. 

Each digit requests three encoding bits 

(i.e., s, two and one (Table 3.1)) to be 

stored in the ROM. Since the n-bit 

coefficient B needs three bits per digit 

when encoded in MB form, the ROM 

width requirement is 3n/2 bits per 

coefficient. Thus, the width and the 

overall size of the ROM are increased by 

50 percent compared to the ROM of the 

conventional scheme (Fig. 2.3). 
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Fig. 2.5. The ROM of pre-encoded 

multiplier with standard coefficients in 

MB Form. 

 

 

2.2.3 Pre-Encoded NR4SD Multipliers 

Design: 

 

The system architecture for the pre-

encoded NR4SD multipliers is presented 

in Fig. 2.6. Two bits are now stored in 

ROM: n
-
2j+1, n

+
2j (Table 2) for the 

NR4SD or n
+

2j+1, n-2j (Table 2.3) for the 

NR4SD+ form. In this way, we reduce 

the memory requirement to n + 1 bits per 

coefficient while the corresponding 

memory required for the pre-encoded MB 

scheme is 3n/2 bits per coefficient. Thus, 

the amount of stored bits is equal to that 

of the conventional MB design, except 

for the most significant digit that needs 

an extra bit as it is MB encoded. 

Compared to the pre encoded MB 

multiplier, where the MB encoding 

blocks are omitted, the pre-encoded 

NR4SD multipliers need extra hardware 

to generate the signals of (6) and (8) for 

the NR4SD and NR4SDþ form, 

respectively. The NR4SD encoding 

blocks of Fig. 2.6 implement the circuitry 

of Fig. 2.7.  

 

 
 

Fig. 2.6. System architecture of the 

NR4SD multipliers. 

 

Each partial product of the pre-encoded 

NR4SD- and NR4SD+multipliers is 

implemented based on Figs. 2.4c and 4d, 

respectively, except for the PPk-1 that 

corresponds to the most significant digit. 

As this digit is in MB form, we use the 

PPG of Fig. 2.4b applying the change 

mentioned in Section 2.4.2 for the sj bit. 

The partial products, properly weighted, 

and the COR of (11) are fed into a CSA 

tree. The input carry cin,j of (11) is 

calculated as cin,j = two
-
j Vone

-
j and cin,j 

= one
-
j for the NR4SD

-
 and NR4SD

+
 pre-

encoded multipliers, respectively, based 

on Tables 2.2 and and 2.3. The carry-save 

output of the CSA tree is finally summed 

using a fast CLA adder. 

 
 

Fig.2.7. Extra circuit needed in the 

NR4SD multipliers to complete the (a) 

NR4SD and (b) NR4SDþ encoding   
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3 REVIEWS OF BOOTH ENCODING 

AND RB PARTIAL PRODUCT 

GENERATOR 

 

 3.1 Radix-4 Booth Encoding  

 

Booth encoding has been proposed to 

facilitate the multiplication of two‘s 

complement binary numbers. It was 

revised as modified Booth encoding or 

radix-4 Booth encoding. The MBE 

scheme is summarized in Table 1, where 

A =aN-1aN-2 ... a2 a1a0 stands for the 

multiplicand, and B= bN-1bN-2 ... b2 b1b0 

stands for the multiplier. The multiplier 

bits are grouped in sets of three adjacent 

bits. The two side bits are overlapped 

with neighboring groups except the first 

multiplier bits group in which it is {b1, b0, 

0}. Each group is decoded by selecting 

the partial product shown in Table 1, 

where 2A indicates twice the 

multiplicand, which can be obtained by 

left shifting. Negation operation is 

achieved by inverting each bit of A and 

adding ‗1‘ (defined as correction bit) to 

the LSB.Methods have been proposed to 

solve the problem of correction bits for 

NB radix-4 Booth encoding (NBBE-2) 

multipliers. However, this problem has 

not been solved for RB MBE multipliers. 

 

TABLE 3.1 MBE Scheme 

 
 

 

 

 

 

3.2 RB Partial Product Generator  

 

As two bits are used to represent one RB 

digit, then a RBPP is generated from two 

NB partial products. The addition of two 

N-bit NB partial products X and Y using 

two‘s complement representation can be 

expressed as follows: 

                                                                               

(2) 

where  is the inverse of Y , and the 

same convention is used in the rest of the 

paper. The composite number X; Y can 

be interpreted as a RB number. The 

RBPP is generated by inverting one of 

the two NB partial products and adding 1 

to the LSB. Each RB digit Xi belongs to 

the set {1,0,1}; this is coded by two bits 

as the pair ðX i ; Xþ i Þ. Note that 1 ¼ 1. 

RB numbers can be coded in several 

ways. Table 2 shows one specific RB 

encoding [6], where the RB digit is 

obtained by performing Xþ i X i .  

 

TABLE 3. 2 RB Encoding Used in This 

Work [6] 

 
Both MBE and RB coding schemes 

introduce errors and two correction terms 

are required: 1) when the NB number is 

converted to a RB format, 1 must be 

added to the LSB of the RB number; 2) 

when the multiplicand is multiplied by 1 

or 2 during the Booth encoding, the 

number is inverted and þ1 must be added 
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to the LSB of the partial product. A 

single ECW can compensate errors from 

both the RB encoding and the radix-4 

Booth recoding. The conventional partial 

product architecture of an 8-bit MBE 

multiplier is shown in Fig. 3.1. 

 

 
Fig. 3.1. Conventional RBPP architecture 

for an 8-bit MBE multiplier. 

Where b_p represents the bit position, pþ 

ij or p ij is generated by using an encoder 

and decoder (Fig. 2).  

 
Fig. 3.2. An encoder and decoder of the 

MBE scheme [10]. 

An N-bit CRBBE-2 multiplier includes 

N=4 RBPP rows and one ECW; the ECW 

takes the form as follows: 

      (3) 

Where i represents the ith row of the 

RBPPs, Ei2 2 f g 0; 1 and Fi0 2 f g 0; 1 . 

In Fi0, a 1 correction term is always 

required by RB coding. If Fi0 also 

corrects the errors from the MBE 

recoding, then the correction term cancels 

out to 0. That is to say that if the 

multiplicand digit is inverted and added 

to 1, then Fi0 is 0, otherwise Fi0 is 1. The 

error-correcting digit Ei2 is determined 

only by the Booth encoding: E 

                 
(4) 

As shown in Fig. 1 the first RBPP row, 

i.e. PP1, consists of the first partial 

product row PPþ 1 and the second partial 

product row PP 1 i.e., PP þ 1 ¼ pþ 19pþ 

18 ... pþ 10and PP 1 ¼ p 17p 16 ... p 10, 

where, pþ 19 and pþ 18 are the sign 

extension bits, so pþ 

    
    (5) 

     (6) 

According to Eq. (2), the sign extension 

bit pþ 29 is also the inverse of pþ 28. The 

p 17 in PP 1 and the p 27 in PP 2 are also 

negated as p 17 and p 27. Eq. (5) and Eq. 

(6) are further used in the next section 

when presenting the proposed modified 

RBPP generator.  

For a 2n-bit CRBBE-2 multiplier, one 

additional RBPP accumulation stage is 

required due to the ECW. For a 64-bit RB 

multiplier, there are five RBPP 

accumulation stages; therefore, the 

number of RBPP accumulation stages can 

be reduced by 20 percent when 

eliminating the ECW in a 64-bit RB 

multiplier, which improves both the 

complexity and the critical path delay. 

 

4. PROPOSED RB PARTIAL 

PRODUCT GENERATOR  

 

A new RB modified partial product 

generator based on MBE (RBMPPG-2) is 

presented in this section; in this design, 

ECW is eliminated by incorporating it 

into both the two MSBs of the first partial 

product row (PP þ 1 ) and the two LSBs 

of the last partial product row (PP 

ðN=4Þ). 
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4.1 Proposed RBMPPG2  

 

Fig. 4.1 illustrates the proposed 

RBMPPG-2 scheme for an 88-bit 

multiplier. It is different from the scheme 

in Fig.4.1, where all the error-correcting 

terms are in the last row. 

 
 

Fig. 4.1. (a) The first new RBMPPG-2 

architecture for an 8-bit MBE multiplier; 

(b) the further revised RBMPPG-2 

architecture by replacing E22 and F20 

with E2, q 2ð2Þ, and q 2ð1Þ; (c) the final 

proposed RBMPPG-2 architecture by 

totally eliminating ECW2 and further 

combing E2 into Qþ 19, Qþ 18, Q 21, and 

Q 20. 

ECW1 is generated by PP1 and expressed 

as 

                                   
(7) 

 

The ECW2 generated by PP2 (also 

defined as an extra ECW) is left as the 

last row and it is expressed as: 

 

                 (8) 

 

To eliminate a RBPP accumulation stage, 

ECW2 needs to be incorporated into PP1 

and PP2. As discussed in Section 2.2 

forFi0 and as per Table 1, F 20 is 

determined by b5; b4; b3 as follows: 

 

 
(9) 

 

 

As per Table 1, when b5b4b3 ¼ 111, 0 ¼ 

0 can be used. Therefore, F20 can be 

expressed as follows: 

 

  

(10) 

By setting PPþ 2 to all ones and adding 

þ1 to the LSB of the partial product, F20 

can then be determined only by b5 as 

follows: 

 

 (11) 

 

A modified radix4 Booth encoding and a 

decoding circuit for the partial product PP 

þ 2 are proposed here (Fig. 4); an extra 

threeinput OR gate is then added to the 

design of [10] (Fig. 2). The three inputs 

of the additional OR gate are b5, b4, and 

b3. When b5b4b3 ¼ 111, it is clear that 

b5 b4 b3¼ 000, pþ 2i ¼ 1, and PP þ 2 is 

set to all ones. 
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Fig.4.2. The modified radix-4 Booth 

encoding and decoding scheme for PP þ 2 

. 

 

 So, E22 and F20 in ECW2 are now 

determined by b7b6b5 without b4; b3. 

Although the complexity is slightly 

increased compared with the previous 

design (Fig. 2), the delay stage remains 

the same. In this work, Qþ 19, Qþ 18, Q 

21, and Q 20 are used to represent the 

modified partial products (i.e., replacing 

pþ 19; pþ 18, p 21 and p 20). q 2ð2Þ, and 

q 2ð1Þ are used to represent the 

additional partial products that are 

determined by F20. As 1 can be coded as 

111 in RB format, E22 and F20 can be 

represented by E2, q 2ð2Þ, q 2ð1Þ, (Fig. 

3b) as follows:  

 

 
      (12) 

     
(13) 

 

 

 

 

 

 

 

 

As per Eq. (11) and Eq. (13), q 2ð2Þ, and 

q 2ð1Þ can also be expressed as follows:  

 

    
(14) 

 

This is further explained by the truth 

table of E22, F20 and E2, q 2ð2Þ, q 2ð1Þ 

(Table 3). Now ECW2 only includes E2 

and E2 2 f g 0; 1; 1 ; E2 can be 

incorporated into the modified partial 

products Qþ 19, Qþ 18, Q 21 and Q 20 by 

replacing pþ 19, pþ 18 and p 21, p 20 in 

the shortest path Fig. 3c. 

From the truth table, E2 can be 

determined by b7b6b5 as follows: 

(15) 

TABLE 4.1 Truth Table of E2, q 2ð2Þ, q 

2ð1Þ and p 21, p 20 b7b6 

 
 

So the following three cases can be 

distinguished: 1) When E2 ¼ 0, Qþ 19, 

Qþ 18, Q 21 and Q 20 remain unchanged 

as: Qþ 19 ¼ pþ 19, Qþ 18 ¼ pþ 18, Q 21 

¼ p 21 and Q 20 ¼ p 20. 2) When E2 ¼ 

1, a 1 is added to pþ 19pþ 18p 21p 20. 3) 

When E2 ¼ 1, a 1 is subtracted from pþ 

19pþ 18p 21p 20.  

TABLE 4.2 The Truth Table of Qþ 19, 

Qþ 18, Q 21, Q 20 
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The relationships between Qþ 19, Qþ 18, 

Q 21, Q 20 and pþ 19, pþ 18, p 21, p 20 

are summarized in Table 4.2. As the two 

MSBs of PP þ 1 i.e., pþ 19 and pþ 18 take 

complementary values as shown in Eq. 

(5), the operations of adding or 

subtracting a 1 will never incur in an 

overflow. Therefore, as per Eq. (15) and 

Table 4, the logic functions of Qþ 19, Qþ 

18, Q 21, and Q 20 can be expressed as 

follows:  

 (16) 

(17) 

 (18) 

 (19) 

The delay of the RBMPPG-2 can be 

further reduced by generating Qþ 19, Qþ 

18, Q 21, Q 20 directly from the 

multiplicand A and the multiplier B. The 

relationships between pþ 19, pþ 18 and 

A, B have been discussed in Section 2.2 

as Eq. (5) and Eq. (6). The relationships 

between p 21, p 20 and A, B are also 

shown in Table 3 according to the MBE 

scheme. Therefore, Qþ 19, Qþ 18, Q 21, 

and Q 20 can be expressed as follows by 

replacing pþ 19, pþ 18, p 21, and p 20 

with the multiplicand bits (ai) and the 

multiplier bits (bi) after simplification:  

 

 (20) 

 (21) 

(22) 

   
    (23) 

 

The circuit diagrams of the modified 

partial product variables Qþ 18, Qþ 19 

and Q 21 are shown in Fig. 5. It is clear 

that Qþ 18 has the longest delay path. It is 

well known that the inverter, the 2-input 

NAND gate and the transmission gate 

(TG) are faster than other gates. So, it is 

desirable to use TGs when designing the 

multiplexer. As shown in Fig. 5a, the 

critical path delay (the dash line) consists 

of a 1-stage AND-OR-Inverter gate, a 

one-stage inverter, and two-stage TGs. 

Therefore, RBMPPG-2 just increases the 

TG delay by one-stage compared with the 

MBE partial product of Fig. 4.2. 
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Fig. 4.3. The circuit diagram of the 

modified partial product variables: (a) Qþ 

18 and Qþ 19, (b) Q 21. 

 

The above discussion is only an example; 

the above technique can be applied to 

design any 2n-bit RB multipliers. It 

eliminates the extra ECWN/4 and saves 

one RBPP accumulation stage, i.e., three 

XOR gate delays, while only slightly 

increasing the delay of the partial product 

generation stage.  

 

In general, an N-bit RB multiplier has 

N=4 RBPP rows using the proposed 

RBMPPG-2. The partial product 

variables pþ 1ðNþ1Þ, pþ 1N, p ðN=4Þ1 

and p ðN=4Þ0 can be replaced by Qþ 

1ðNþ1Þ, Qþ 1N, Q ðN=4Þ1, and Q 

ðN=4Þ0. The radix-4 Booth decoding of 

a PPR (PPþ N=4) needs additional three-

input OR gates (Fig. 4). Therefore, the 

extra ECWN/4 is removed by the 

transformation of four partial product 

variables Qþ 1ðNþ1Þ, Qþ 1N , Q 

ðN=4Þ1, Q ðN=4Þ0 and one partial 

product row is saved in RB multipliers 

with any power-oftwo word-length. 

 

 

4.2 Design of RBMPPG-2-Based High-

Speed RB Multipliers  

 

The proposed RBMPPG-2 can be applied 

to any 2n-bit RB multipliers with a 

reduction of a RBPP accumulation stage 

compared with conventional designs. 

Although the delay of RMPPG-2 

increases by one-stage of TG delay, the 

delay of one RBPP accumulation stage is 

significantly larger than a one-stage TG 

delay. Therefore, the delay of the entire 

multiplier is reduced. The improved 

complexity, delay and power 

consumption are very attractive for the 

proposed design. 

 

 
 

Fig. 4.4. The block diagram of a 32-bit 

RB multiplier using the proposed 

RBMPPG-2 

 

A 32-bit RB MBE multiplier using the 

proposed RBPP generator is shown in 

Fig. 6. The multiplier consists of the 

proposed RBMPPG-2, three RBPP 

accumulation stages, and one RB-NB 

converter. Eight RBBE-2 blocks generate 

the RBPP (pþ i , p i ); they are summed 

up by the RBPP reduction tree that has 

three RBPP accumulation stages. Each 

RBPP accumulation block contains RB 

full adders (RBFAs) and half adders 

(RBHAs).  
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The 64-bit RB-NB converter converts the 

final accumulation results into the NB 

representation, which uses a hybrid 

parallel-prefix/carry select adder (as one 

of the most efficient fast parallel adder 

designs). There are four stages in a 

conventional 32-bit RB MBE multiplier 

architecture; however, by using the 

proposed RBMPPG-2, the number of 

RBPP accumulation stages is reduced 

from 4 to 3 (i.e., a 25 percent reduction). 

These are significant savings in delay, 

area as well as power consumption. The 

improvements in delay, area and power 

consumption are further demonstrated in 

the next section by simulation. 

 

TABLE 4.3 Comparisons of RBPP 

Accumulation Stages in RBPP Reduction 

Tree 

 

 
 

 

Table 4.3 compares the number of RBPP 

accumulation stages in different 2n-bit 

RB multipliers, i.e., 8x8-bit, 16x16-bit, 

32x32-bit, 64x64-bit multipliers. For a 

64-bit multiplier, the proposed design has 

four RBPP accumulation stages; it 

reduces the partial product accumulation 

delay time by 20 percent compared with 

CRBBE-2 multipliers. 

 

 Although both the proposed design and 

RBBE-4 have the same number of RBPP 

accumulation stages, RBBE-4 is more 

complex, because it uses radix-16 Booth 

encoding 

. 
III. RESULTS AND COMPARISION 

 

 
 

 

Fig. 4.5 Simulated output for Existing 

Pre-Encoded NR4SD Multipliers. 
 

All the simulation results of the proposed 

32x32 multiplier using RBMPPG are 

performed using Verilog HDL. The 

simulations are performed on Xilinx ISE 

14.7. The corresponding simulation 

results of the proposed 32x32 multiplier 

using RBMPPG are shown below. 
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Fig.4.6: Simulation of proposed 32x32 proposed 

multiplier using RBMPPG 

 

Table 4.4. Comparison Table for Area 

and delay of existing and proposed 

system: 
 

S.no Description 

of 

Parameter 

Existing 

System 

Proposed 

System 

1 Area 62% 54% 

2 Delay 150.899 

ns 

115.791 

ns 

  

 Compared to existing system the area 

and delays are less in proposed system. 

So, proposed system is preferable. 

VI.CONCLUSIONS 

 

 A new modified RBPP generator has 

been proposed in this paper; this design 

eliminates the additional ECW that is 

introduced by previous designs. 

Therefore, a RBPP accumulation stage is 

saved due to the elimination of ECW. 

The new RB partial product generation 

technique can be applied to any 2n-bit 

RB multipliers to reduce the number of 

RBPP rows from N/4+1 to N/4. 

Simulation results have shown that the 

performance of RB MBE multipliers 

using the proposed RBMPPG-2 is 

improved significantly in terms of delay 

and area. The proposed designs achieve 

significant reductions in area when the 

word length is at least 32 bits. Hence, the 

proposed RBPP generation method is a 

very useful technique when designing 

area of-two RB MBE multipliers. All the 

synthesis and simulation results of the 

proposed 32x32 multiplier using 

RBMPPG are performed on Xilinx ISE 

14.7 using Verilog HDL 

.  
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