

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1457

Design of Redundant Binary Multipliers using Modified Partial

Product Generator

1
P.Harikrishna.

M.Tech.

2
Mrs.M.Pavitra

Associate Professor.

1,2

 Dept of ECE (VLSID).
1,2

 PBR VITS College of Engineering, Kavali, Andhra Pradesh

.

Abstract: Multiplication is one of the

basic functions used in digital signal

processing (DSP). Due to its high

modularity and carry-free addition, a

redundant binary (RB) representation can

be used when designing high

performance multipliers. The

conventional RB multiplier requires an

additional RB partial product (RBPP)

row, because an error-correcting word

(ECW) is generated by both the radix-4

Modified Booth encoding (MBE) and the

RB encoding.

 This incurs in an additional RBPP

accumulation stage for the MBE

multiplier. In this paper, a new RB

modified partial product generator

(RBMPPG) is proposed; it removes the

extra ECW and hence, it saves one RBPP

accumulation stage. Therefore, the

proposed RBMPPG generates fewer

partial product rows than a conventional

RB MBE multiplier. Simulation results

show that the proposed RBMPPG based

designs significantly improve the area

and High speed when the word length of

each operand in the multiplier is at least

32 bits; these reductions over previous

NB multiplier designs incur in

a modest delay increase. The delay can be

reduced using the proposed RB

multipliers when compared with existing

RB multipliers.

Index Terms- Redundant binary modified

booth encoding, RB partial product

generator, RB multiplier.

1 INTRODUCTION

Digital multipliers are widely used in

arithmetic units of microprocessors,

multimedia and digital signal processors.

Many algorithms and architectures have

been proposed to design high-speed and

low-power multipliers. A normal binary

(NB) multiplication by digital circuits

includes three steps. In the first step,

partial products are generated; in the

second step, all partial products are added

by a partial product reduction tree until

two partial product rows remain. In the

third step, the two partial product rows

are added by a fast carry propagation

adder. Two methods have been used to

perform the second step for the partial

product reduction. A first method uses

four-two compressors, while a second

method uses redundant binary (RB)

numbers. Both methods allow the partial

product reduction tree to be reduced at a

rate of 2:1.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1458

The redundant binary number

representation has been introduced by

Avizienis to perform signed-digit

arithmetic; the RB number has the

capability to be represented in different

ways. Fast multipliers can be designed

using redundant binary addition trees.

The redundant binary representation has

also been applied to a floating-point

processor and implemented in VLSI.

High performance RB multipliers have

become popular due to the advantageous

features, such as high modularity and

carry-free addition.

A RB multiplier consists of a RB partial

product (RBPP) generator, a RBPP

reduction tree and a RB-NB converter. A

Radix-4 Booth encoding or a modified

Booth encoding (MBE) is usually used in

the partial product generator of parallel

multipliers to reduce the number of

partial product rows by half. A RBPP row

can be obtained from two adjacent NB

partial product rows by inverting one of

the pair rows an N-bit conventional RB

MBE (CRBBE-2) multiplier requires

[N/4] RBPP rows. An additional error-

correcting word (ECW) is also required

by both the RB and the Booth encoding

therefore, the number of RBPP

accumulation stages (NRBPPAS)

required by a power-of-two word-length

(i.e., 2
n
-bit) multiplier is given by:

(1)

If the additional ECW can be removed,

an RBPP accumulation stage is saved, so

resulting in improvements of complexity

and critical path delay for a RB

multiplier. For example, a conventional

32- bit RB multiplier has four RBPP

accumulation stages; if the ECW is

removed, then the number of RBPP

accumulation stages is reduced to 3, i.e.,

the stage count is decreased by 25

percent. Note that the problem of extra

ECW does not exist in standard

significant size (i.e., 24x24-bit and 5454-

bit) RB multipliers as used in floating

point-arithmetic units.

Alternatively, a high-radix Booth

encoding technique can reduce the

number of partial products. However, the

number of expensive hard multiples (i.e.,

a multiple that is not a power of two and

the operation cannot be performed by

simple shifting and/or complementation)

increases too. Besli and Desmukh

noticed that some hard multiples can be

obtained by the differences of two simple

power-of-two multiplies. A new radix-16

Booth encoding (RBBE-4) technique

without ECW has been proposed in it

avoids the issue of hard multiples. A

radix-16 RB Booth encoder can be used

to overcome the hard multiple problem

and avoid the extra ECW, but at the cost

of doubling the number of RBPP rows.

Therefore, the number of radix-16 RBPP

rows is the same as in the radix-4 MBE.

However, the RBPP generator based on a

radix-16 Booth encoding has a complex

circuit structure and a lower speed

compared with the MBE partial product

generator when requiring the same

number of partial products.

This paper focuses on the RBPP

generator for designing a 2n-bit RB

multiplier with fewer partial product rows

by eliminating the extra ECW. A new RB

modified partial product generator based

on MBE (RBMPPG-2) is proposed. In

the proposed RBMPPG-2, the ECW of

each row is moved to its next neighbor

row. Furthermore, the extra ECW

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1459

generated by the last partial product row

is combined with both the two most

significant bits (MSBs) of the first partial

product row and the two least significant

bits (LSBs) of the last partial product row

by logic simplification. Therefore, the

proposed method reduces the number of

RBPP rows from N=4 þ 1 to N=4, i.e., a

RBPP accumulation stage is saved. The

proposed method is applied to 8x8-,

16x16- and 32x32-bit RB multiplier

designs; the designs are synthesized and

simulated on Xilinx ISE. The proposed

designs achieve significant reductions in

compared with existing multipliers when

the word length of each of the operands is

at least 32 bits. While a modest increase

in delay is encountered (approximately 5

percent).

This paper is organized as follows.

Section 2 introduces radix-4 Booth

encoding. The design of the conventional

RBPP generator is also reviewed. Section

3 presents the proposed RBMPPG. This

section also demonstrates the adoption of

the proposed RBMPPG into various

word-length RB multipliers. Section 4

provides the evaluation results of the new

RB multipliers using the proposed

RBMPPG for different word lengths and

compares them to previous best designs

found in the technical literature. The

conclusion is provided in Section 5.

2. EXISTING BOOTH MULTIPLIER

2.1 Non-Redundant Radix-4 Signed-Digit

Algorithm

Fig.2.1. Block diagram of the NR4SD

encoding scheme at the (a) digit and (b)

word level.

Fig.2.2. Block diagram of the NR4SDþ

encoding scheme at the (a) digit and (b)

word level.

 Step1. Consider the initial values j =0

and c0 =0.

Step2. Calculate the carry c2j+1 and the

sum n
+

2j of a half adder (HA) with inputs

b2j and c2j (Fig.2.

1a).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1460

Step3. Calculate the positively signed

carry c2j+2 (+) and the negatively signed

sum n 2j+1 (-) of a HA* with inputs b2j+1

(+) and c2j+1 (+) (Fig.3.1a). The outputs

c2j+2 and n 2j+1 of the HA* relate to its

inputs as follows:

The following Boolean equations

summarize the HA* operation:

Step 4. Calculate the value of the b
NR-

j

digit.

 ……. (2.5)

Equation (5) results from the fact that n
-

2j+1 is negatively signed and n
+
2j is

positively signed.

Step5. j :=j + 1.

 Step6. If If (j < k_ 1), go to Step 2. If (j =

k -1), encode the most significant digit

based on the MB algorithm and

considering the three consecutive bits to

be b2k-1, b2k-2 and c2k-2 (Fig.2.1b). If

(j = k), stop.

Equations (6) show how the NR4SD
-

encoding signals one
+
 j, one

-
 j and two

-
j of

Table 2.2 are generated.

 …….. (2.6)

The minimum and maximum limits of the

dynamic range in the NR4SD
-
form are -

2
n-1

 -2
n-3

 -2
n-5

 -…-2 < -2n-1 and 2n-1 +

2n-4 + 2n-6 +…. +1 > 2
n-1

 - 1. We

observe that the NR4SD
-
form has larger

dynamic range than the 2‘s complement

form.

2.1.1 NR4SDþ Algorithm

Step1. Consider the initial values j = 0

and c0 =0.

 Step2. Calculate the positively signed

carry c2j+1 (+) and the negatively signed

sum n
-
2j (-) of a HA* with inputs

b2j (+) and c2j (+) (Fig. 2a). The carry

c2j+1 and the sum n
-
2j of the HA* relate to

its inputs as follows:

The outputs of the HA* are analyzed at

gate level in the following equations:

Step3. Calculate the carry c2j+2 and the

sum n
+
 2j+1 of a HA with inputs b2j+1 and

c2j+1.

Step4. Calculate the value of the b
NR+

j

digit

 ……. (2.7)

Step5. j := j + 1.

 Step 6. If (j < k_-1), go to Step 2. If (j =

k - 1), encode the most significant digit

according to MB algorithm and

considering the three consecutive bits to

be b2k-1, b2k-2 and c2k-2 (Fig.2.2b). If

(j =k), stop.

Equations (8) show how the NR4SDþ

encoding signals one
+
 j, one

-
j and two

+
 j

of Table 2.3 are generated.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1461

 ….. (2.8)

The minimum and maximum limits of the

dynamic range in the NR4SDþ form are -

2
n-1

-2
n-4

- 2
n-6

 -… -1 < -2
n-1

and 2
n-1

+ 2
n-3

+ 2
n-5

+…. +2 > 2
n-1

- 1. As observed in

the NR4SD_ encoding technique, the

NR4SDþ form has larger dynamic range

than the 2‘s complement form.

Considering the 8-bit 2‘s complement

number N, Table 2.4 exposes the limit

values -2
8
 = -128, 2

8
 - 1 = 127, and two

typical values of N, and presents the MB,

NR4SD_ and NR4SDþ digits that result

when applying the corresponding

encoding techniques to each value of N

we considered. We added a bar above the

negatively signed digits in order to

distinguish them from the positively

signed ones.

2.2 Pre-Encoded Multipliers Design:

 In this section, we explore the

implementation of pre-encoded

multipliers. One of the two inputs of

these multipliers is pre-encoded either in

MB or in NR4SD
-
/NR4SD

+

representation. We consider that this

input comes from a set of fixed

coefficients (e.g., the coefficients for a

number of filters in which this multiplier

will be used in a dedicated system or the

sine table required in an FFT

implementation).The coefficients are

encoded off-line based on MB or NR4SD

algorithms and the resulting bits of

encoding are stored in a ROM. Since our

purpose is to estimate the efficiency of

the proposed multipliers, we first present

a review of the conventional MB

multiplier in order to compare it with the

pre-encoded schemes.

Fig.2.3. System architecture of the

conventional MB multiplier.

2.2.1 Conventional MB Multiplier:

 Fig. 2.3 presents the architecture of the

system which comprises the conventional

MB multiplier and the ROM with

coefficients in 2‘s complement form. Let

us consider the multiplication A •B. The

coefficient B =(bn_1 . . . b0)2‘s consists of n

= 2k bits and is driven to the MB

encoding blocks from a ROM where it is

stored in 2‘s complement form. It is

encoded according to the MB algorithm

(Section 2) and multiplied by A =(an_1 . . .

a0)2‘s, which is in 2‘s complement

representation. We note that the ROM

data bus width equals the width of

coefficient B (n bits) and that it outputs

one coefficient on each clock cycle.

The k partial products are generated as

follows:

 …….. (2.9)

 The generation of the ith bit pj,i of the

partial product PPj is illustrated at gate

level in Fig. [6], [7]. For the computation

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1462

of the least and most significant bits of

PPj , we consider a-1 = 0 and an = an-1,

respectively.

After shaping the partial products, they

are added, properly weighted, through a

carry save adder (CSA) tree along with

the correction term (COR):

 ……………. (2.10)

 ……. (2.11)

Where cin,j = (onej  twoj)  sj (Table

1). The CS output of the tree is leaded to

a fast carry look ahead (CLA) adder [19]

to form the final result P ¼=A • B

(Fig.2.3).

2.2.2 Pre-Encoded MB Multiplier

Design:

 In the pre-encoded MB multiplier

scheme, the coefficient B is encoded off-

line according to the conventional MB

form (Table 1). The resulting encoding

signals of B are stored in a ROM. The

circled part of Fig. 2.3, which contains

the ROM with coefficients in 2‘s

complement form and the MB encoding

circuit, is now totally replaced by the

ROM of Fig. 2.5. The MB encoding

blocks of Fig. 2.3 are omitted. The new

ROM of Fig. 2.5 is used to store the

encoding signals of B and feed them into

the partial product generators (PPj

Generators—PPG) on each clock cycle.

 Targeting to decrease switching activity,

the value ‗1‘ of sj in the last entry of

Table 1 is replaced by ‗0‘. The sign sj is

now given by the relation:

 ……… (2.12)

 As a result, the PPG of Fig. 3.4a is

replaced by the one of Fig. 3.4b.

Compared to (4), (12) leads to a more

complex design. However, due to the pre-

encoding technique, there is no area/delay

overhead at the circuit.

Fig.2.4. Generation of the ith Bit pj,i of

PPj for a) Conventional, b) Pre-Encoded

MB Multipliers, c) NR4SD
-
, d) NR4SD

+

Pre-Encoded Multipliers, and e) NR4SD
-
,

f) NR4SD
+
 Pre-Encoded Multipliers after

reconstruction.

 The partial products, properly weighted,

and the COR of (11) are fed into a CSA

tree. The input carry cin; j of (11) is

computed as cin;j ¼ sj based on (12) and

Table 2.1. The CS output of the tree is

finally merged by a fast CLA added.

However, the ROM width is increased.

Each digit requests three encoding bits

(i.e., s, two and one (Table 3.1)) to be

stored in the ROM. Since the n-bit

coefficient B needs three bits per digit

when encoded in MB form, the ROM

width requirement is 3n/2 bits per

coefficient. Thus, the width and the

overall size of the ROM are increased by

50 percent compared to the ROM of the

conventional scheme (Fig. 2.3).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1463

Fig. 2.5. The ROM of pre-encoded

multiplier with standard coefficients in

MB Form.

2.2.3 Pre-Encoded NR4SD Multipliers

Design:

The system architecture for the pre-

encoded NR4SD multipliers is presented

in Fig. 2.6. Two bits are now stored in

ROM: n
-
2j+1, n

+
2j (Table 2) for the

NR4SD or n
+

2j+1, n-2j (Table 2.3) for the

NR4SD+ form. In this way, we reduce

the memory requirement to n + 1 bits per

coefficient while the corresponding

memory required for the pre-encoded MB

scheme is 3n/2 bits per coefficient. Thus,

the amount of stored bits is equal to that

of the conventional MB design, except

for the most significant digit that needs

an extra bit as it is MB encoded.

Compared to the pre encoded MB

multiplier, where the MB encoding

blocks are omitted, the pre-encoded

NR4SD multipliers need extra hardware

to generate the signals of (6) and (8) for

the NR4SD and NR4SDþ form,

respectively. The NR4SD encoding

blocks of Fig. 2.6 implement the circuitry

of Fig. 2.7.

Fig. 2.6. System architecture of the

NR4SD multipliers.

Each partial product of the pre-encoded

NR4SD- and NR4SD+multipliers is

implemented based on Figs. 2.4c and 4d,

respectively, except for the PPk-1 that

corresponds to the most significant digit.

As this digit is in MB form, we use the

PPG of Fig. 2.4b applying the change

mentioned in Section 2.4.2 for the sj bit.

The partial products, properly weighted,

and the COR of (11) are fed into a CSA

tree. The input carry cin,j of (11) is

calculated as cin,j = two
-
j Vone

-
j and cin,j

= one
-
j for the NR4SD

-
 and NR4SD

+
 pre-

encoded multipliers, respectively, based

on Tables 2.2 and and 2.3. The carry-save

output of the CSA tree is finally summed

using a fast CLA adder.

Fig.2.7. Extra circuit needed in the

NR4SD multipliers to complete the (a)

NR4SD and (b) NR4SDþ encoding

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1464

3 REVIEWS OF BOOTH ENCODING

AND RB PARTIAL PRODUCT

GENERATOR

 3.1 Radix-4 Booth Encoding

Booth encoding has been proposed to

facilitate the multiplication of two‘s

complement binary numbers. It was

revised as modified Booth encoding or

radix-4 Booth encoding. The MBE

scheme is summarized in Table 1, where

A =aN-1aN-2 ... a2 a1a0 stands for the

multiplicand, and B= bN-1bN-2 ... b2 b1b0

stands for the multiplier. The multiplier

bits are grouped in sets of three adjacent

bits. The two side bits are overlapped

with neighboring groups except the first

multiplier bits group in which it is {b1, b0,

0}. Each group is decoded by selecting

the partial product shown in Table 1,

where 2A indicates twice the

multiplicand, which can be obtained by

left shifting. Negation operation is

achieved by inverting each bit of A and

adding ‗1‘ (defined as correction bit) to

the LSB.Methods have been proposed to

solve the problem of correction bits for

NB radix-4 Booth encoding (NBBE-2)

multipliers. However, this problem has

not been solved for RB MBE multipliers.

TABLE 3.1 MBE Scheme

3.2 RB Partial Product Generator

As two bits are used to represent one RB

digit, then a RBPP is generated from two

NB partial products. The addition of two

N-bit NB partial products X and Y using

two‘s complement representation can be

expressed as follows:

(2)

where is the inverse of Y , and the

same convention is used in the rest of the

paper. The composite number X; Y can

be interpreted as a RB number. The

RBPP is generated by inverting one of

the two NB partial products and adding 1

to the LSB. Each RB digit Xi belongs to

the set {1,0,1}; this is coded by two bits

as the pair ðX i ; Xþ i Þ. Note that 1 ¼ 1.

RB numbers can be coded in several

ways. Table 2 shows one specific RB

encoding [6], where the RB digit is

obtained by performing Xþ i X i .

TABLE 3. 2 RB Encoding Used in This

Work [6]

Both MBE and RB coding schemes

introduce errors and two correction terms

are required: 1) when the NB number is

converted to a RB format, 1 must be

added to the LSB of the RB number; 2)

when the multiplicand is multiplied by 1

or 2 during the Booth encoding, the

number is inverted and þ1 must be added

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1465

to the LSB of the partial product. A

single ECW can compensate errors from

both the RB encoding and the radix-4

Booth recoding. The conventional partial

product architecture of an 8-bit MBE

multiplier is shown in Fig. 3.1.

Fig. 3.1. Conventional RBPP architecture

for an 8-bit MBE multiplier.

Where b_p represents the bit position, pþ

ij or p ij is generated by using an encoder

and decoder (Fig. 2).

Fig. 3.2. An encoder and decoder of the

MBE scheme [10].

An N-bit CRBBE-2 multiplier includes

N=4 RBPP rows and one ECW; the ECW

takes the form as follows:

 (3)

Where i represents the ith row of the

RBPPs, Ei2 2 f g 0; 1 and Fi0 2 f g 0; 1 .

In Fi0, a 1 correction term is always

required by RB coding. If Fi0 also

corrects the errors from the MBE

recoding, then the correction term cancels

out to 0. That is to say that if the

multiplicand digit is inverted and added

to 1, then Fi0 is 0, otherwise Fi0 is 1. The

error-correcting digit Ei2 is determined

only by the Booth encoding: E

(4)

As shown in Fig. 1 the first RBPP row,

i.e. PP1, consists of the first partial

product row PPþ 1 and the second partial

product row PP 1 i.e., PP þ 1 ¼ pþ 19pþ

18 ... pþ 10and PP 1 ¼ p 17p 16 ... p 10,

where, pþ 19 and pþ 18 are the sign

extension bits, so pþ

 (5)

 (6)

According to Eq. (2), the sign extension

bit pþ 29 is also the inverse of pþ 28. The

p 17 in PP 1 and the p 27 in PP 2 are also

negated as p 17 and p 27. Eq. (5) and Eq.

(6) are further used in the next section

when presenting the proposed modified

RBPP generator.

For a 2n-bit CRBBE-2 multiplier, one

additional RBPP accumulation stage is

required due to the ECW. For a 64-bit RB

multiplier, there are five RBPP

accumulation stages; therefore, the

number of RBPP accumulation stages can

be reduced by 20 percent when

eliminating the ECW in a 64-bit RB

multiplier, which improves both the

complexity and the critical path delay.

4. PROPOSED RB PARTIAL

PRODUCT GENERATOR

A new RB modified partial product

generator based on MBE (RBMPPG-2) is

presented in this section; in this design,

ECW is eliminated by incorporating it

into both the two MSBs of the first partial

product row (PP þ 1) and the two LSBs

of the last partial product row (PP

ðN=4Þ).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1466

4.1 Proposed RBMPPG2

Fig. 4.1 illustrates the proposed

RBMPPG-2 scheme for an 88-bit

multiplier. It is different from the scheme

in Fig.4.1, where all the error-correcting

terms are in the last row.

Fig. 4.1. (a) The first new RBMPPG-2

architecture for an 8-bit MBE multiplier;

(b) the further revised RBMPPG-2

architecture by replacing E22 and F20

with E2, q 2ð2Þ, and q 2ð1Þ; (c) the final

proposed RBMPPG-2 architecture by

totally eliminating ECW2 and further

combing E2 into Qþ 19, Qþ 18, Q 21, and

Q 20.

ECW1 is generated by PP1 and expressed

as

(7)

The ECW2 generated by PP2 (also

defined as an extra ECW) is left as the

last row and it is expressed as:

 (8)

To eliminate a RBPP accumulation stage,

ECW2 needs to be incorporated into PP1

and PP2. As discussed in Section 2.2

forFi0 and as per Table 1, F 20 is

determined by b5; b4; b3 as follows:

(9)

As per Table 1, when b5b4b3 ¼ 111, 0 ¼

0 can be used. Therefore, F20 can be

expressed as follows:

(10)

By setting PPþ 2 to all ones and adding

þ1 to the LSB of the partial product, F20

can then be determined only by b5 as

follows:

 (11)

A modified radix4 Booth encoding and a

decoding circuit for the partial product PP

þ 2 are proposed here (Fig. 4); an extra

threeinput OR gate is then added to the

design of [10] (Fig. 2). The three inputs

of the additional OR gate are b5, b4, and

b3. When b5b4b3 ¼ 111, it is clear that

b5 b4 b3¼ 000, pþ 2i ¼ 1, and PP þ 2 is

set to all ones.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1467

Fig.4.2. The modified radix-4 Booth

encoding and decoding scheme for PP þ 2

.

 So, E22 and F20 in ECW2 are now

determined by b7b6b5 without b4; b3.

Although the complexity is slightly

increased compared with the previous

design (Fig. 2), the delay stage remains

the same. In this work, Qþ 19, Qþ 18, Q

21, and Q 20 are used to represent the

modified partial products (i.e., replacing

pþ 19; pþ 18, p 21 and p 20). q 2ð2Þ, and

q 2ð1Þ are used to represent the

additional partial products that are

determined by F20. As 1 can be coded as

111 in RB format, E22 and F20 can be

represented by E2, q 2ð2Þ, q 2ð1Þ, (Fig.

3b) as follows:

 (12)

(13)

As per Eq. (11) and Eq. (13), q 2ð2Þ, and

q 2ð1Þ can also be expressed as follows:

(14)

This is further explained by the truth

table of E22, F20 and E2, q 2ð2Þ, q 2ð1Þ

(Table 3). Now ECW2 only includes E2

and E2 2 f g 0; 1; 1 ; E2 can be

incorporated into the modified partial

products Qþ 19, Qþ 18, Q 21 and Q 20 by

replacing pþ 19, pþ 18 and p 21, p 20 in

the shortest path Fig. 3c.

From the truth table, E2 can be

determined by b7b6b5 as follows:

(15)

TABLE 4.1 Truth Table of E2, q 2ð2Þ, q

2ð1Þ and p 21, p 20 b7b6

So the following three cases can be

distinguished: 1) When E2 ¼ 0, Qþ 19,

Qþ 18, Q 21 and Q 20 remain unchanged

as: Qþ 19 ¼ pþ 19, Qþ 18 ¼ pþ 18, Q 21

¼ p 21 and Q 20 ¼ p 20. 2) When E2 ¼

1, a 1 is added to pþ 19pþ 18p 21p 20. 3)

When E2 ¼ 1, a 1 is subtracted from pþ

19pþ 18p 21p 20.

TABLE 4.2 The Truth Table of Qþ 19,

Qþ 18, Q 21, Q 20

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1468

The relationships between Qþ 19, Qþ 18,

Q 21, Q 20 and pþ 19, pþ 18, p 21, p 20

are summarized in Table 4.2. As the two

MSBs of PP þ 1 i.e., pþ 19 and pþ 18 take

complementary values as shown in Eq.

(5), the operations of adding or

subtracting a 1 will never incur in an

overflow. Therefore, as per Eq. (15) and

Table 4, the logic functions of Qþ 19, Qþ

18, Q 21, and Q 20 can be expressed as

follows:

 (16)

(17)

 (18)

 (19)

The delay of the RBMPPG-2 can be

further reduced by generating Qþ 19, Qþ

18, Q 21, Q 20 directly from the

multiplicand A and the multiplier B. The

relationships between pþ 19, pþ 18 and

A, B have been discussed in Section 2.2

as Eq. (5) and Eq. (6). The relationships

between p 21, p 20 and A, B are also

shown in Table 3 according to the MBE

scheme. Therefore, Qþ 19, Qþ 18, Q 21,

and Q 20 can be expressed as follows by

replacing pþ 19, pþ 18, p 21, and p 20

with the multiplicand bits (ai) and the

multiplier bits (bi) after simplification:

 (20)

 (21)

(22)

 (23)

The circuit diagrams of the modified

partial product variables Qþ 18, Qþ 19

and Q 21 are shown in Fig. 5. It is clear

that Qþ 18 has the longest delay path. It is

well known that the inverter, the 2-input

NAND gate and the transmission gate

(TG) are faster than other gates. So, it is

desirable to use TGs when designing the

multiplexer. As shown in Fig. 5a, the

critical path delay (the dash line) consists

of a 1-stage AND-OR-Inverter gate, a

one-stage inverter, and two-stage TGs.

Therefore, RBMPPG-2 just increases the

TG delay by one-stage compared with the

MBE partial product of Fig. 4.2.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1469

Fig. 4.3. The circuit diagram of the

modified partial product variables: (a) Qþ

18 and Qþ 19, (b) Q 21.

The above discussion is only an example;

the above technique can be applied to

design any 2n-bit RB multipliers. It

eliminates the extra ECWN/4 and saves

one RBPP accumulation stage, i.e., three

XOR gate delays, while only slightly

increasing the delay of the partial product

generation stage.

In general, an N-bit RB multiplier has

N=4 RBPP rows using the proposed

RBMPPG-2. The partial product

variables pþ 1ðNþ1Þ, pþ 1N, p ðN=4Þ1

and p ðN=4Þ0 can be replaced by Qþ

1ðNþ1Þ, Qþ 1N, Q ðN=4Þ1, and Q

ðN=4Þ0. The radix-4 Booth decoding of

a PPR (PPþ N=4) needs additional three-

input OR gates (Fig. 4). Therefore, the

extra ECWN/4 is removed by the

transformation of four partial product

variables Qþ 1ðNþ1Þ, Qþ 1N , Q

ðN=4Þ1, Q ðN=4Þ0 and one partial

product row is saved in RB multipliers

with any power-oftwo word-length.

4.2 Design of RBMPPG-2-Based High-

Speed RB Multipliers

The proposed RBMPPG-2 can be applied

to any 2n-bit RB multipliers with a

reduction of a RBPP accumulation stage

compared with conventional designs.

Although the delay of RMPPG-2

increases by one-stage of TG delay, the

delay of one RBPP accumulation stage is

significantly larger than a one-stage TG

delay. Therefore, the delay of the entire

multiplier is reduced. The improved

complexity, delay and power

consumption are very attractive for the

proposed design.

Fig. 4.4. The block diagram of a 32-bit

RB multiplier using the proposed

RBMPPG-2

A 32-bit RB MBE multiplier using the

proposed RBPP generator is shown in

Fig. 6. The multiplier consists of the

proposed RBMPPG-2, three RBPP

accumulation stages, and one RB-NB

converter. Eight RBBE-2 blocks generate

the RBPP (pþ i , p i); they are summed

up by the RBPP reduction tree that has

three RBPP accumulation stages. Each

RBPP accumulation block contains RB

full adders (RBFAs) and half adders

(RBHAs).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1470

The 64-bit RB-NB converter converts the

final accumulation results into the NB

representation, which uses a hybrid

parallel-prefix/carry select adder (as one

of the most efficient fast parallel adder

designs). There are four stages in a

conventional 32-bit RB MBE multiplier

architecture; however, by using the

proposed RBMPPG-2, the number of

RBPP accumulation stages is reduced

from 4 to 3 (i.e., a 25 percent reduction).

These are significant savings in delay,

area as well as power consumption. The

improvements in delay, area and power

consumption are further demonstrated in

the next section by simulation.

TABLE 4.3 Comparisons of RBPP

Accumulation Stages in RBPP Reduction

Tree

Table 4.3 compares the number of RBPP

accumulation stages in different 2n-bit

RB multipliers, i.e., 8x8-bit, 16x16-bit,

32x32-bit, 64x64-bit multipliers. For a

64-bit multiplier, the proposed design has

four RBPP accumulation stages; it

reduces the partial product accumulation

delay time by 20 percent compared with

CRBBE-2 multipliers.

 Although both the proposed design and

RBBE-4 have the same number of RBPP

accumulation stages, RBBE-4 is more

complex, because it uses radix-16 Booth

encoding

.
III. RESULTS AND COMPARISION

Fig. 4.5 Simulated output for Existing

Pre-Encoded NR4SD Multipliers.

All the simulation results of the proposed

32x32 multiplier using RBMPPG are

performed using Verilog HDL. The

simulations are performed on Xilinx ISE

14.7. The corresponding simulation

results of the proposed 32x32 multiplier

using RBMPPG are shown below.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1471

Fig.4.6: Simulation of proposed 32x32 proposed

multiplier using RBMPPG

Table 4.4. Comparison Table for Area

and delay of existing and proposed

system:

S.no Description

of

Parameter

Existing

System

Proposed

System

1 Area 62% 54%

2 Delay 150.899

ns

115.791

ns

 Compared to existing system the area

and delays are less in proposed system.

So, proposed system is preferable.

VI.CONCLUSIONS

 A new modified RBPP generator has

been proposed in this paper; this design

eliminates the additional ECW that is

introduced by previous designs.

Therefore, a RBPP accumulation stage is

saved due to the elimination of ECW.

The new RB partial product generation

technique can be applied to any 2n-bit

RB multipliers to reduce the number of

RBPP rows from N/4+1 to N/4.

Simulation results have shown that the

performance of RB MBE multipliers

using the proposed RBMPPG-2 is

improved significantly in terms of delay

and area. The proposed designs achieve

significant reductions in area when the

word length is at least 32 bits. Hence, the

proposed RBPP generation method is a

very useful technique when designing

area of-two RB MBE multipliers. All the

synthesis and simulation results of the

proposed 32x32 multiplier using

RBMPPG are performed on Xilinx ISE

14.7 using Verilog HDL

.

REFERENCES

 [1] A. Avizienis, ―Signed-digit number

representations for fast parallel

arithmetic,‖ IRE Trans. Electron.

Comput., vol. EC-10, pp. 389–400, 1961.

[2] N. Takagi, H. Yasuura, and S.

Yajima, ―High-speed VLSI multiplication

algorithm with a redundant binary

addition tree,‖ IEEE Trans. Comput., vol.

C-34, no. 9, pp. 789–796, Sep. 1985.

[3] Y. Harata, Y. Nakamura, H. Nagase,

M. Takigawa, and N. Takagi, ―A high

speed multiplier using a redundant binary

adder tree,‖ IEEE J. Solid-State Circuits,

vol. SC-22, no. 1, pp. 28–34, Feb. 1987.

[4] H. Edamatsu, T. Taniguchi, T.

Nishiyama, and S. Kuninobu, ―A 33

MFLOPS floating point processor using

redundant binary representation,‖ in Proc.

IEEE Int. Solid-State Circuits Conf.,

1988, pp. 152–153.

[5] H. Makino, Y. Nakase, and H.

Shinohara, ―A 8.8-ns 54x54-bit multiplier

using new redundant binary architecture,‖

in Proc. Int. Conf. Comput. Des., 1993,

pp. 202–205.

[6] H. Makino, Y. Nakase, H. Suzuki, H.

Morinaka, H. Shinohara, and K. Makino,

―An 8.8-ns 5454-bit multiplier with high

speed redundant binary architecture,‖

IEEE J. Solid-State Circuits, vol. 31, no.

6, pp. 773–783, Jun. 1996.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1472

[7] Y. Kim, B. Song, J. Grosspietsch, and

S. Gillig, ―A carry-free 54b54b multiplier

using equivalent bit conversion

algorithm,‖ IEEE J. Solid-State Circuits,

vol. 36, no. 10, pp. 1538–1545, Oct.

2001.

[8] Y. He and C. Chang, ―A power-delay

efficient hybrid carry-lookahead carry-

select based redundant binary to two‘s

complement converter,‖ IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 55, no.

1, pp. 336–346, Feb. 2008.

[9] G. Wang and M. Tull, ―A new

redundant binary number to 2‘s-

complement number converter,‖ in Proc.

Region 5 Conf.: Annu. Tech. Leadership

Workshop, 2004, pp. 141–143.

[10] W. Yeh and C. Jen, ―High-speed

booth encoded parallel multiplier

design,‖ IEEE Trans. Comput., vol. 49,

no. 7, pp. 692–701, Jul. 2000.

[11] S. Kuang, J. Wang, and C. Guo,

―Modified Booth multiplier with a

regular partial product array,‖ IEEE

Trans. Circuits Syst. II, vol. 56, no. 5, pp.

404–408, May 2009.

 [12] J. Kang and J. Gaudiot, ―A simple

high-speed multiplier design,‖ IEEE

Trans. Comput., vol. 55, no. 10, pp.

1253–1258, Oct. 2006.

[13] F. Lamberti, N. Andrikos, E. Antelo,

and P. Montuschi, ―Reducing the

computation time in (short bit-width)

two‘s complement multipliers,‖ IEEE

Trans. Comput., vol. 60, no. 2, pp. 148–

156, Feb. 2011.

