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Abstract 
Frequency spectrum is a limited shared 

resource, nowadays interested by an ever 
growing number of different applications. 
Generally, the companies providing such 
services pay to the governments the right 
of using a limited portion of the 
spectrum, consequently they would be 
assured that the licensed radio spectrum 
resource is not interested by significant 
external interferences. At the same time, 
they have to guarantee that their devices 
make an efficient use of the spectrum and 
meet the electromagnetic compatibility 
regulations. Therefore the competent 
authorities are called to control the 
access to the spectrum adopting suitable 
management and monitoring policies, as 
well as the manufacturers have to 
periodically verify the correct working of 
their apparatuses. Several measurement 
solutions are present on the market. They 
generally refer to real-time spectrum 
analyzers and measurement receivers. 
Both of them are characterized by good 
metrological accuracies but show costs, 
dimensions and weights that make no 
possible a use “on the field”. The paper 
presents a first step in realizing a digital 
signal processing based measurement 
instrument able to suitably accomplish 
for the above mentioned needs. In 
particular the attention has been given to 
the DSP based measurement section of 
the instrument. To these aims an 
innovative measurement method for 
spectrum monitoring and management is 
proposed in this paper. It performs an 
efficient sequential analysis based on a 
sample by sample digital processing. 
Three main issues are in particular 

pursued: (i) measurement performance 
comparable to that exhibited by other 
methods proposed in literature; (ii) fast 
measurement time, (iii) easy 
implementation on cost-effective 
measurement hardware. 

 
Keywords: Spectrum monitoring, 
spectrum management, spectrogram, 
digital signal processing, RF 
measurement .  
 
INTRODUCTION  

FREQUENCY SPECTRUM  is a limited 
resource and the demand  for  its  use  is  
nowadays  increasing.  Many governments 
in the world, recognizing its market value, 
began auctioning the right to use their 
airwaves. Companies that purchase 
spectrum license, offer a wide range of for-
fee services  such  as  voice  calls,  text  
messaging,  wireless Internet, High-
Definition Television (HDTV) and so on. 
For service providers and equipment 
manufacturers, sums of money are at stake 
in the production and delivery of wireless  
products  and  services.  Extensive  
regulatory requirements  have  been  
designed  to  avoid  unwanted interference 
between users that share the radio spectrum 
resource. Special groups routinely monitor 
emissions to ensure  that  transmission  
equipments  comply  with regulations. 
Compliance monitoring of signal spectrum 
is  
continuously increasing.  

The growth of commercial signal 
monitoring applications has increased 
significantly with the diffusion of wireless 
devices  [1]. Inadvertent interfering 
emissions can be very costly to cellular 
network operators. Likewise, commercial 
broadcasters can lose substantial market 
audiences due to a poorly controlled 
adjacent channel station. Furthermore the 
RF spectrum is continually getting more 
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crowded. More consumer devices are 
starting to communicate with one another, 
and computer networking is expanding at a 
phenomenal rate  [1]. All of these 
competing spectrum users must coexist 
without serious interference. In such RF 
environment, all equipment must meet 
spurious emission requirements to allow a 
clean path to neighboring signals. 
 

Determining fault in interference cases 
begins with monitoring of transmitted 
spectral emissions  [2]. Spectrum 
regulators need to monitor different types 
of signals to determine if enforcement 
actions are warranted  [3].  

As a result, the need of spectrum 
measurement and monitoring is becoming 
more and more mandatory. To these aims, 
several measurement solutions are 
proposed. They are based on two main 
classes of instruments: (a) real-time 
spectrum analyzers (RSAs) and (b) 
measurement receivers.  

The former can be considered as an 
advanced version of the standard Vector 
Signal Analyzers (VSAs), specifically 
addressed to the analysis of complex 
digitally modulated signals. They are 
mainly used for general-purpose wireless 
spectrum monitoring applications. In 
addition, thanks to their special hardware 
architecture, they can perform a high 
number of Discrete Fourier Transforms 
(DFTs) in a very short time as to guarantee 
both a seamless acquisition and the 
estimation of the spectrogram  [4], which 
correlates time and frequency information. 
However the cost, dimensions and weight 
of such instruments may limit their use, 
especially for on-field applications. 
Differently from RSAs, measurement 
receivers are specifically addressed to a 
target application, for example a particular 
communication standard. This turns out 
into proper features, such as built-in 
“personalities”, mandated to warrant 
standards-compliant measurements of 
wireless formats  [5]. Moreover, newer 

solutions complemented with additional 
DSP-based hardware are now appearing on 
the market, capable of providing, as RSAs 
do, a spectrogram analysis. They exhibit 
attractive weight, size and dimensions, 
even though showing worse accuracy than 
that peculiar to RSAs  [6], [7].  

Stemming from their past experience in 
the field of power and spectrum 
measurements of digital communication 
signals  [8], [9], the authors propose a new 
method for spectrum monitoring and 
management entitled to be a valid, cost-
effective alternative to the abovementioned 
solutions. Three main issues are in 
particular pursued: (i) easy implementation 
on cost-effective DSP (Digital Signal 
Processing) or FPGA (Field Programmable 
Gate Array) hardware, (ii) measurement 
performance, in terms of accuracy, 
resolution and sensitivity, comparable to 
that exhibited by RSAs; and (iii) 
measurement time lower than those 
characterizing RSAs.  

The proposed method relies on a 
sequential approach based on a sample- by-
sample processing. It could overcome 
typical limits that ordinary solutions, 
performing a batch processing on fixed-
length overlapped segments of data, like 
those based on FFTs or Short-Time Fourier 
Transforms (STFTs), suffer from. 
 
where T S=1/fS is the sampling interval and 
fN=1/(2TS) is the Nyquist rate.  

Consequently, known p, it is necessary to 
properly estimate the p+1 parameters 
ap,1,ap,2,…,ap,p and σ2

p.  
The most popular approach for AR 

parameter estimation with N-1 data 
samples was introduced by Burg in 1967 
[12]. It estimates the model parameters for 
order i starting from those previously 
estimated for order i-1 by calculating the 
reflection coefficients ai,i  [13] which 
minimize a sum of forward and backward 
linear prediction error energies: 
 

N −1        
SSi ( N − 1) = ei ( n 2 bi ( n 2for 1 ≤ i ≤ p (3) 
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∑ ) + ) 
n =i        

 
where N-1 is the index corresponding to the 

actual discrete sample time, e i(n) is the 
forward linear prediction error at order i, 
bi(n) is the backward linear prediction error 
at order i, whose expressions are:  

In the following, after a brief description of 
the proposed measurement method, a 
tuning stage is performed and, finally, 
some experiments on frequency hopping 
signals are presented. 
 

2. THEORETICAL 
BACKGROUND  

Traditional power spectrum density (PSD) 
estimation methods can be classified in two 
categories: nonparametric and parametric. 
Parametric methods can exhibit a reduced 
convergence time and are entitled to 
provide more significant results than those 
achievable from nonparametric approaches 
when the acquired record covers a 
relatively short time interval. Furthermore 
they can be implemented in an optimized 
manner (sequential estimation), thus 
allowing measurement results to be updated 
whenever a new sample is available and 
removing the need to locally store a large 
number of acquired samples  [8]. Thanks to 
these characteristics they can be considered 
as good solution to be implemented in cost-
effective hardware platforms  [10],  [11].  

Among the several parametric PSD 
estimation methods the widespread used 
are the autoregressive (AR) estimation 
methods  [8]- [11]. They suppose that the 
analyzing signal is the output of a linear 
system as specified in the following: 
 

x ( n ) = − 
∑p 

a p ,m x ( n − m ) + ε (
n ) (1) 

  

ei ( n ) = ∑i 
a i ,k x ( n − k 
) 

for 
1 

≤ i ≤ p and i ≤ n ≤
N-1 (4)

k =0     

and      

bi ( n ) =
∑i 

a i ,k x ( n − i +
k ) 

for 
1 

≤ i ≤ p and i ≤ n ≤
N-1. (5)

k =0      
 
Note that ap,0 is defined as unity.  

The AR parameters are computed using 
the so called 

Levinson-Durbin recursions  [13]: 
 
a i , m  = a i − 1, m + a i , i 
a i −1,i −m , 

1 ≤ m ≤ i −1  1 ≤ i ≤
p (6)  

σ i2 =σi
2
−1 (1 − 

 ai ,
i  

 
2 ) 1 ≤ i ≤ p . (7) 

 
   

 
Consequently it is only important to 
estimate ai,i, for all model order from 
i=1…p.  

Substituting (4) and (5) into (3) and using 
(6), it is possible to demonstrate that SSi 
depends only by a i,i, and it can be 
minimized by imposing: 
 

   N −1 

( n )bi −1 ( n −1) 

   

ai , i = Ki ( N − 1)
= − 

 

2∑ei 
−1 

 (8) 
 

  n =i      
N −1 

 

     

 

 

 ∑ 
ei −1 ( n 
) 2 + 

bi−1 ( n 
−1) 2  

 n =i          
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where x(n) is the analyzed signal sample at the time 
interval   
n, ap,1,ap,2,…,ap,p  are the model coefficients, {ε(n)} 
is a 

Equation (8) in combination with (6) and (7), for 
i =1,…,p  

white noise process with variance σ2
p, and p is the 

model 
forms a recursive algorithm for the PSD 
estimation. Even  

order. The PSD of a signal modeled in this way is 
totally 

thought this method is characterized by good 
metrological  

described by the model parameters and the variance 
of the 

performance, it is not suitable to be implemented 
on cost-  

white noise process      
effective platforms, because, operating on batch 
data, it asks  

        
a huge memory requirement and a computational 
burden not  

S ( f 
)= 

 σ p2TS  (2) 
compatible with cost-effective hardware platforms 
[11].  

    
 f ≤ fN 

Fortunately a time-update recursive formulation 
for (8) is 

 
 p  2  

  
1+∑a p
,me 

− j
2πmf
Ts      

  m=1       
 
 
 
 

MEASUREMENT SCIENCE 
REVIEW, Volume 11, No. 1, 
2011 

 
 

K i ( N )
= K i ( N 
− 1) − 

K i (
N −
1) ( 

 ei 
−1 (
N ) 

 
2 
+ 

 bi −1

( N 
− 1) 

 2 )+ 2ei −1 ( 
N ) bi −1 ( N 
−1)  

. 

for 1 
≤ i ≤
p (9) 

 
     
     

             
 
 

This new equation in combination with 
(6) and (7), for i =1,…,p and with initial 
conditions e0(N) = b0(N) = x(N), forms a 
sequential time-update algorithm for the 
reflection coefficients.  

This is the sequential Burg algorithm and 
it can update the PSD estimate whenever a 
new sample is available and it is 
characterized by a good trade-off between 
metrological performance and hardware 
requirements  [11]. Unfortunately it is 
affected by an infinite memory, and doesn’t 
track the PSD time evolution. In this way 
the output of its analysis is a snap-shot of 
what it is happened during the total 
observation period. This effect is clearly 
shown in the section 4 in which some 
numerical results are given. A possible 
solution to reduce this effect might be to 
reset the algorithm output in prearranged 
time intervals. This solution shows some 
limits related to the length of the 
observation period, which it should be short 
enough to warrant an adequate spectrum 
tracking, and at the same time long enough 
to warrant the convergence of the 
sequential estimation. Inaccuracies and loss 
of repeatability may be otherwise observed. 
Therefore alternative solutions have to be 

considered. 
 

3. THE PROPOSED 
METHOD  

As previously described, an effective 
spectrum monitoring requires suitable PSD 
time tracking. This means that it is 
necessary to implement a measurement 
method able to produce a new PSD 
estimation on a very short observation time 
and of reducing the influence of previous 
acquired samples respect to the recent ones. 
To this aim, two hypotheses have been 
done: the former adopts a fixed-length 
sliding window, the latter an exponentially 
growing window  [15].  

The fixed-length sliding window permits 
considering only a finite number of past 
data values. Even though it seems to be 
effective, its implementation requires to 
store in the memory as many past input 
values as are included in the window 
length.  

The exponentially growing window 
weighs the input samples giving more 
importance to the recent samples and 
attenuating the effects of the past ones (see 
Fig.1b). This window does not need to 
store samples in memory, thus resulting 
more proper for development on cost-

 N∑n=i   ei −1 ( n )2 + bi
−1 ( n −1)2 
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effective hardware. Then, in the following 
this second approach is adopted, by 
modifying the traditional Burg cost 
function (3) in this way: 
 

N −1 
SSi ( N − 1) = ∑λN −1−n   ei ( n )2 + bi ( n )2    
for 1 ≤ i ≤ p  (10)  

n =i 
 
where λ, termed forgetting factor, is in the 
following range 
 
0<λ<1. Note that λ = 1 results in the 
traditional Burg case. Typical values of λ 
are included in the range from 0.9 to 1 and 
it should be carefully selected to achieve 
the required performance [15].  

It is possible to demonstrate  [14] that, 
analogously to the sequential Burg 
algorithm, (10) can be minimized by 
imposing: 
 

N −1 
K i ( N − 1) = − 2 ∑n=i λN −1−nei −1

( ( n )−bi −)
1 ( n 

−1) for 1 ≤ i ≤ p (11) 
DEN i   N  1 

 
where 
 

N −1       
for 1 ≤ i ≤
p. 

 
DEN i ( N − 1 ) =
∑λN −1−n  

ei −1 (
n ) 

2 
+ 

bi −1 ( n 
−1) 2  

n =i       
(12) 

 
        
 

A time-update recursive formulation for 
(11) is reported in the bottom of this page, 
in which N denotes the actual time index. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Example of a L-length 
sliding window (a) and an 
exponentially growing 
window (b). 

 
Equation (13) in combination with the 

Levinson-Durbin recursions, for i =1,…,p 
and with initial conditions 
e0(N)=b0(N)=x(N), forms the modified 
sequential Burg time-update algorithm for 
the reflection coefficients. 

The proposed method operates as follows: 
after a preliminary initialization stage, 
every time a new sample is acquired a new 
loop starts. For each iteration of the loop it 
updates the model parameters by using (6) 
and (7), the reflection coefficients Ki and 
the prediction errors ei and bi using (13) 
and (4), (5) respectively. The loop is 
composed by a number of iterations equal 
to the model order p. When the loop is 
ended a new PSD of the analyzing signal is 
suitably estimated by using the equation 
(2). 
 
 
  

 
K i ( N 
− 1) ( 

 ei −1

( N ) 
 
2 +

 

bi 
−1 (
N −
1) 

 

2 )+ 2ei

−1 ( N ) 
bi −1 

( N
−1)

for 
1 
≤ i 
≤ 
p (13)

 
       

K ( N ) = K 

( N − 1) − 

            
            

i i 

λDEN 
i ( N −
1) + 

ei 
−1

( 
N 
) 

2 
+ 

bi 
−1 (
N 
−1)2     
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For each acquired sample the proposed 
method requires 9p real multiplications 
and 7 p real additions if only the 
reflection coefficients are updated with a 
consequent computational burden equal 
to 16p floating point operations (flops). 
If the estimates of the AR parameters 
have to be updated the application of the 
Levinson-Durbin recursions requires p2 
real multiplications and p2 real additions, 
increasing the computational burden to 
2p2+16p flops [10]. 
 

4. TUNING OF THE 
METHOD  

As described in the previous section, 
the value of the forgetting factor λ has to 
be suitably selected. To choose the 
optimal value of λ a preliminary 
experimental test campaign performed in 
Matlab 7TM simulation environment has 
been performed. In particular, the 
proposed measurement method has been 
adopted to track a disturbing signal that 
changes its frequency characteristics 
during the observation period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Frequency-time behaviour of 
the test signal. 

 
 

To this aim, a special test signal 
characterized by the frequency behavior 
reported in Fig.2 has been designed, in 
order to emulate typical test cases that 
are possible to find in real applications. It 
is composed by a single frequency tone 
that for the first 20 μs is equal to 20 

MHz, successively it hops at 21.7 MHz 
and starts a linear frequency sweep 
reaching 41.6 MHz in 120 μs. At the end 
it makes a large hop to 30 MHz, 
stabilizing on this value for the last 20 
μs.  

As for the measurement method, a 
sampling rate equal to 100 MS/s and a 
vertical resolution equal to 7 bit effective 
[10] have been considered. The 
spectrogram has been evaluated 
considering 4096 bins for each spectrum, 
obtaining a frequency resolution equal to 
24 kHz.  

Previous studies on Orthogonal 
frequency- division multiplexing 
(OFDM) signals (that can be view as 
sum of equally-spaced frequency tones) 
inside the frequency range of the 
considered test signal and sampled at 100 
MS/s have suggested a model order p 
equal to 40 to be selected to provides a 
good PSD estimation  [10],  [11]. The 
following figures of merit have been 
analyzed:  
(i) the settling time (tset). It represents a 

convergence time and is evaluated as 
the mean time required to coerce the 
percentage frequency error 
(difference between the estimated 
and the imposed frequency divided 
by the imposed frequency, expressed 
in percentage) inside an area 
bounded by a threshold equal to 
±1.5%; 

 
(ii)  the mean convergence frequency 

error (μef) defined as the mean 
frequency error evaluated after the 
settling time;  

(iii)  the standard deviation of the 
convergence frequency   
error (σef) defined as the standard 
deviation of the frequency error 
evaluated after the settling time.  

All the figures of merit are evaluated 
for different values of  
λ ranging in its typical interval, from 0.9 

to 1, (see [15]).   
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As regard the figure of merit (i), it has 
been evaluated at  

three different interesting points: 
1) at the start time (tset,in), in order to 
estimate the initial transient of the 
algorithm;  
2) when the first frequency hop happens 
and the signal starts its frequency sweep 
(tset,A). This information is useful because 
it allows estimating how the proposed 
method reacts to a sharp frequency 
variation followed by a smooth one;   
3) when the second hop happens and the 

signal frequency is  
settled at 30 MHz (tset,B). With this 
analysis it is possible to estimate the 
method behavior after a very sharp 
frequency 
variation. 

The measurement results related to the 
settling time analysis are reported in 
Table I. This figure of merit was not 
evaluated when λ = 1 was involved 
because it is not able to track the signal 
frequency. 
 

Table I. Settling Time Versus 
Forgetting Factor. 

 

Forgetting  
Settling 
time  

factors λ 
tset,in 
[ns]  tset,A [μs]  

tset,B 
[μs] 

λ = 0.999 280  19.38  1.05 
λ = 0.998 280  9.23  0.80 
λ = 0.996 280  3.47  1.14 

λ = 0.994 280  1.59  0.83 
λ = 0.992 280  1.00  0.65 
λ = 0.990 280  0.83  0.55 
λ = 0.980 330  51.29  0.28 
λ = 0.960 380  98.89  14.65 
λ = 0.940 11890  99.87  19.99 
λ = 0.920 14980  100  20.00 
λ = 0.900 14990  100  19.99 
 

From the analysis of the obtained 
measurement results it is possible to 
highlight that:  
a) tset,in is almost constant and it does not 
seem to be influenced by the forgetting 
factor, λ, in the interval 0.990-0.999. 
Outside this interval tset,in starts 
noticeably to increase, reaching values 
near to 15 μs at λ=0.900; 
b) tset,A and tset,B are influenced by the 
forgetting factor value, in particular the 
proposed method seems to reduce its  
convergence time when λ value 
decreases from 0.999 to 0.99. Outside 
this interval it possible to note a reversal; 
c) tset,B values are ever lower than tset,A 
ones, demonstrating that the even though 
this situation is characterized by a high 
frequency hop, the final frequency 
remains constant, making easier its 
tracking by the proposed method;  
d) values of λ lower than 0.940 show a 
tset,B equal to 20 μs, i.e. equal to duration 
of the 30 MHz-tone, demonstrating an  
insufficient ability to track the signal. 
 
 

 
 

Thanks to these consideration only the 
values of λ included in the interval 0.990 -
0.999 was considered in the subsequent 
stages of the work.  

As regard the figure of merits (ii) and 
(iii), they have been evaluated in the 
following time intervals: 
1) tset,in<t<20 μs, in order to estimate the 

frequency tracking performance of the 
proposed method after the starting 
transient and in presence of a single 
tone;   

2) tset,A<t<140 μs. This analysis allows 

evaluating the measurement 
performance in presence of a swept-
frequency tone, after a short transient 
caused by a little frequency hop;   

3) t>tset,B, allows analyzing the method 
performance in presence of a single tone 
after a deep frequency hop.  
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tracking performance;  
d) an intermediate value of λ equal to 0.996 

seems to present negligible memory 
effects and a good frequency tracking 
performance.  
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Table II. Measurement Performance at 
Steady-State. Mean Convergence 
Frequency Error and Standard 
Deviation of the Convergence 
Frequency Error Versus Forgetting 
Factor. 

 

Forgetting 
tset,in<t<20 μs 

tset,A<t<140 
μs 

t> 
tset,B   

μ  σ 
ef 

μ σ 
ef 

μ σ 
ef 

 

factors λ 
ef   ef  ef   
 

[kHz] 
 

[kHz] 
 [kHz

] 
  

      
λ = 0.999 26  46 -95 40 22 12  
λ = 0.998 27  47 -74 81 18 13  
λ = 0.996 21  51 -73 96 23 23  
λ = 0.994 20  57 -77 93 27 34  
λ = 0.992 25  68 -61 92 21 44  
λ = 0.990 66  77 -72 84 36 58  
 

From the analysis of the measurement 
results, reported in Table II, the 
following considerations can be drawn:  
a) the mean frequency error obtained 

when the analyzing signal is a single 
tone at a fixed frequency is ever 
lower than 66 kHz, that corresponds 
to 0.33%;  

b) the mean frequency error 
experienced during the linear 
frequency sweep is ever higher than 
one evaluated when a simple tone is 
applied;   

c) the experimental standard deviation 
(σef) seems to be influenced in 
inverse proportion by λ, it is 
important to consider that the 
frequency resolution of the analysis 
is 24 kHz;  

d) a value of λ inside the range 0.992-
0.998 seems to grant a good trade-
off between measurement accuracy 
and  
convergence time.  

In Fig.3, as an example, the obtained 
spectrograms for three values λ are 
reported. In particular the values 
considered in Figure 3 are λ = 1.000 

(absence of forgetting) λ = 0.996 and λ 
= 0.900. The information related to the 
amplitude of the PSD is coded by the 
color and the measurement unit is 
dBm.  

From the analysis of these results the 
following consideration can be drawn:  
a) all the measures are characterized 

by a good signal to noise ratio 
(SNR);   

b) measurement results, obtained when 
λ = 1 is involved, are affected by the 
memory effect that does not allow a 
good frequency tracking;   

c) a value of λ equal 0.900 seems to be 
not adequate for this analysis, 
showing an instability in frequency  
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(a) λ = 1.000 
 
 
 

(b) λ = 0.996 
 
 

(c) λ = 0.900 
 

Fig.3. The obtained spectrograms, 
evaluated 
considering three 
values of λ. 

 
5. PERFORMANCE 
ASSESSMENT  

To verify the measurement method 
performance further tests have been 

carried out on a frequency hopping 
signal. This class of signals has been 
selected as test set since can be 
considered as the worst case operating of 
the measurement method due to frequent 
and rapid variations that characterize 
these signals. In the author opinion they 
operate as step signals do in the 
characterization of a dynamic system 
where they highlight time responses and 
metrological characteristics.  

More in detail, the test signal has been 
designed to evaluate the method 
performance when the analyzing signal 
perform a very large hop followed by a 
very short one. In fact it is composed by 
a single frequency tone that for the 
MEASUREMENT SCIENCE REVIEW, 
Volume 11, No. 1, 2011 

 
 
first 40 μs is equal to 10 MHz, 
successively it makes a large hop to 20 
MHz and remains stable at this frequency 
for 40 μs. Afterwards it hops at 15 MHz 
and after 40 μs it makes a new small hop 
at 16 MHz stabilizing on this value for the 
last 40 μs.  

As for the measurement method, the 
same test conditions and figures of merit 
illustrated in the previous section have 
been taken into account. As in the 
previous section the 
figures of merit have been evaluated at the 
start time (tset,in) and after each hop (tset,A, 
tset,B and tset,C), considering different  
values of λ ranging from 0.99 to 0.999. 

 
Table III. Settling Time Versus 
Forgetting Factor.  

Forgetting 
Settling 
time  

factors λ 
tset,in 
[ns] tset,A [μs] tset,B [μs] tset,C [μs] 

λ = 0.999 710 N/A N/A N/A 
λ = 0.998 710 8.87 21.56 9.26 
λ = 0.996 760 1.51 3.87 5.51 
λ = 0.994 860 0.93 1.13 1.56 
λ = 0.992 39970 0.73 0.95 1.22 
λ = 0.990 37770 0.60 3.06 1.00 

 
The measurement results related to the 

settling time analysis are reported in Table 
III. From its analysis it is possible to 
highlight that:  
a) a value of λ equal to 0.999 is not 
suitable to the analysis because it cannot 
mitigate the memory effect of the 
sequential Burg method and as a 
consequence it continues estimating the 
initial tone at 10 MHz even if it is not 
present, causing a frequency error ever 
greater than 1.5% during the second, the 
third and the fourth hop;   
b) as experienced in the previous section 
tset,A, tset,B and tset,C are influenced by the 
forgetting factor value, in particular   
the proposed method seems to reduce its 
convergence time when λ value decreases 
from 0.999 to 0.99.  

As regard mean convergence frequency 
error (μef) and the standard deviation of 
the convergence frequency error (σef), they 
have been evaluated in the time interval 
elapsed from the end of the settling time 
and the instant strictly before the tone 
makes a new hop.  

From the analysis of the results, reported 
in Table IV, the following considerations 
can be drawn:  
a) the mean frequency error obtained 
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when the analyzing signal is a single 
tone at a fixed frequency is ever lower 
than 72 kHz, very similar to that 
experienced in the previous section;   

b) the experimental standard deviation 
(σef) seems to be influenced in inverse 
proportion by λ, it is important to 
consider that the frequency resolution 
of the analysis is 24 kHz;  

c) as experienced in the previous section, 
a value of λ inside the range 0.992-
0.998 seems to grant a good trade-off 
between measurement accuracy and 
convergence time.   

In Fig.4, as an example, the obtained 
spectrograms for three values λ are 
reported. In particular the values 
considered are λ = 0.999, λ = 0.996 and λ 
= 0.900. The information related to the 
amplitude of the PSD is coded by the 
color and the measurement unit is dBm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) λ = 0.999 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

(b) λ = 0.996 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) λ = 0.990 
 

Fig.4. The obtained spectrograms, 
evaluated 
considering three 
values of λ. 

 
From the analysis of these results the 

following consideration can be drawn:  
a) all the measures are characterized by a 

good signal to noise ratio (SNR);  
b) measurement results, obtained when λ = 

0.999 is involved, are affected by the 
memory effect that does not allow a 
good frequency tracking;  

c) a value of λ equal 0.99 even if it is less 
affected by memory, it seem to be not 
adequate for this analysis, showing an 
instability in frequency tracking 
performance;   

d) an intermediate value of λ equal to 0.996 
seems to present negligible memory 
effects and a good frequency tracking 
performance.  
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Table IV. Measurement Performance at Steady-State. Mean Convergence Frequency Error 
and Standard Deviation of the Convergence Frequency Error Versus Forgetting Factor. 
 

Forgetting 
tset,in<t<40 μs tset,A<t<80 μs tset,B<t<120 μs t> tset,C  

μef 
 
σef μef σef μef 

 
σef μef 

 
σef 

 

factors λ 
    

[kHz] 
 

[kHz] 
 

[kHz] [kHz] 
  

     
λ = 0.999 25  16 N/A N/A N/A  N/A N/A  N/A  
λ = 0.998 25  17 29 12 24  12 26  12  
λ = 0.996 22  30 23 22 17  25 17  23  
λ = 0.994 19  38 20 35 46  35 16  35  
λ = 0.992 -72  78 32 51 14  48 13  47  
λ = 0.990 -3.5  46 27 62 -9.5  55 5.6  54  
 
 

6. CONCLUSIONS  
An innovative digital processing method 

for spectrum management and monitoring 
has been designed. It is based on a 
modified version of the sequential Burg 
algorithm in order to mitigate its memory 
effects and giving the ability to track the 
frequency variation of the analyzing signal 
during the observation period.  

In particular the Burg cost function has 
been modified by using an exponentially 
growing window with the aim of weighing 
the input samples giving more importance 
to the recent samples and attenuating the 
effects of the past ones. This solution 
avoids the need to store samples in the 
memory. This feature makes it a suitable 
candidate to be implemented on a cost-
effective digital signal processing platform 
(DSP -based or FPGA-based). A 
preliminary characterization campaign has 
been designed to analyze the tracking 
capabilities and the measurement 
accuracies of the method. To this aim a test 
signal, characterized by a single tone that 
makes a little frequency hop and after that 
starts a linear sweep and then it carries out 
a deep frequency hop stopping at a fixed 
frequency, has been considered. This 
choice allows simulating some conditions 
that are common in practice, especially in 

spectrum monitoring activities. In 
particular, a good settling time, not 
influenced by λ, has been experienced 
when a single frequency tone is tracked. 
Excellent convergence time has been 
evaluated when the method tracks a signal 
that after a little hop start a linear frequency 
sweep or when the signal makes a deep 
frequency hop and then stop its frequency 
variations. Small mean frequency error, 
ever lower than 0.33% when the test signal 
is characterized by a single frequency tone, 
has been evaluated.  

The performance assessment carried out 
on a different signal (characterized by 
several frequency hops) has confirmed that 
the proposed method shows a good trade-
off between the measurement accuracy and 
the convergence time when λ falls in the 
range 0.992÷0.998. Future activities will be 
addressed to implement the proposed 
method on a cost effective hardware 
platform and to make a comparison with 
competitor measurement instruments 
available on the market. 
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