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ABSTRACT 

This essay deals a novel projective integration method (PIM) for the efficient transient stability 

simulation of power systems with high DG penetration. One procedure of the proposed PIM is 

decomposed into two stages, which adopt mixed explicit implicit integration methods to achieve both 

efficiency and numerical stability. Moreover, the stability of the PIM is not affected by its parameter, 

which is related to the step size. Based on this property, an adaptive parameter scheme is developed 

based on error estimation to fit the time constants of the system dynamics and further increase the 

simulation speed. The presented approach is several times faster than the conventional integration 

methods with a similar level of accuracy. The proposed method is demonstrated using test systems with 

DGs and virtual synchronous generators, and the performance is verified against MATLAB/Simulink 
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I. INTRODUCTION 

The majority of   distributed generation 

involving sources  require inverters on the front 

end when connected to the grid. However, 

inverters do not have a rotating mass and thus 

have low inertia. Traditionally, the voltage and 

frequency stability of power grids are mainly 

supported by conventional rotating synchronous 

generators with large inertia coupled with a high 

short-circuit current ratio (SCR). Thus, the 

gradual subsituation of synchronous generators 

by the inverter-based distributed generators 

(DGs) may result in poor transient responses of 

power systems during large disturbances. If 

these issues are not well addressed, the poor 

responses may develop into a transient stability 

problem . To address this simulation, the 

concept of virtual inertia has been developed to 

im-prove the stability of power systems , 

wherein the “virtual synchronous generator” 

(VSG)  is the most popular one. The VSG 

concept provides new control strategies for 

controllable DGs, such as batteries, to make 

them behave similar to a synchronous generator 
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and provide virtual inertia to power grids. Thus, 

the integration of DGs and VSGs can affect the 

dynamic behavior of the power system as a 

whole.  Time-domain simulation is the most 

accurate and reliable approach to evaluate the 

dynamic behavior of power systems. However, 

the computational efficiency of such simulations 

is severely limited by the multi-time-scale 

property of power systems. The multiple time 

scales of conventional power systems mainly 

come from the different dynamics of 

synchronous generators and their regulators. 

 

This project presents a projective integration 

method (PIM) for the fast transient stability 

simulation of power systems with high DG 

penetration. The main motivation is to take the 

ad-vantages of both explicit and implicit 

methods: efficiency and numerical stability. One 

procedure of the PIM consists of two stages. 

First, several steps of integration are performed 

using explicit methods with a small step size 

corresponding to the time constants of the fast 

components of the simulated system. Then, 

based on the previous results, a projective 

integration step with a larger step size is 

performed using an implicit pre-diction-

correction method. The concept of the projective 

method was first proposed by Gear for stiff 

problems with gaps in their eigen value 

spectrum [29], and an extrapolation method, 

which had been proved equivalent to the explicit 

Euler method, was adopted in the projective 

stage. This scheme has been widely used for 

multi-time-scale simulations in the chemical, 

thermodynamic and molecular physical sectors. 

However, the numerical stability of Gear’s 

projective method can be easily influenced by 

the step size, and thus, it is difficult to improve 

the computational efficiency further. The PIM 

proposed here adopts the implicit prediction-

correction method for the projective integration, 

and the former extrapolation method is used as 

one component of the predictor. Through this 

modification, the numerical stability of the 

proposed PIM is no longer affected by its 

parameter related to the step size. In addition, 

other properties of the PIM and the contributions 

of the present paper are summarized as follows:  

1) The small-step integration in the PIM is 

adopted to reflect the fast dynamics of the 

inverter-based DGs.  

2) The projective stage in the PIM is performed 

to reflect the slow dynamics and overall trends 

of the fast dynamics of the simulated system.  

3) The PIM has an accuracy of order 2.  

4) This paper also proposes an adaptive 

parameter control scheme for the PIM based on 

error estimation. The error estimation is 

convenient to realize through the explicit 

integration steps of the PIM, and the step sizes 

of the projective integration can be controlled to 

fit the dynamics of the simulated system 

adaptively.  

of the proposed PIM, which has not been 

discussed before in the literature.  

6) The proposed PIM is demonstrated on two 

test systems with DGs and VSGs.  

 

II. MODELLING OF VIRTUAL 

SYNCHRONOUS GENERATOR 
The basic concept of a VSG is shown in Fig. 1. 

In common practice, energy storage devices, 

such as batteries, are connected to the DC side 

of the VSG inverter. 

 

Fig. 1. Basic concept of a VSG. 
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A. Swing Equation for VSG Inertia 

Emulation 

The main purpose of a VSG is to emulate the 

inertia and damping properties of 

electromechanical synchronous gener-ators. 

These two main aspects can be captured by the 

swing equation (1), which is widely used in the 

literature on power system stability and 

dynamics 

 

where 𝐽 represents the moment of inertia, 𝐷 is 

the coefficient of fiction loss of the synchronous 

generator, 𝜔𝑔 and 𝜔0 denote the angular and 

synchronous speed of the generator, 

respectively, 𝑇𝑚 is the mechanical torque 

produced by the prime motor, and 𝑇𝑒 is the 

electrical torque. 

 

 

 

B. Control Strategy of a VSG 

 

Fig. 2. Control scheme of the VSGs for transient 

stability analysis. 

As shown in Fig. 2, the mechanical component 

of a synchronous generator is emulated by the 

VSG controller as a logical concept, which is 

electrically fully effective from a grid 

perspective. The damping gain 𝐾𝐷 of the 

emulated synchronous generator is inversely 

linked to the droop gain 𝐾𝑃. Moreover, the time 

constant 𝑇𝑃 of the low-pass filter on the active 

power flow serves as an analogous function of 

the virtual inertia, which has a significant impact 

on the time scale of the system. Furthermore, the 

parameters selected for VSG implementations 

are not constrained by the physical design of any 

real synchronous generator. Thus, the diversity 

of the parameter selection of VSGs may 

aggravate the stiffness of the transient stability 

problem. 

 

III. PROJECTIVE INTEGRATION 

METHOD 

In the pro-posed PIM, one procedure consists of 

several explicit steps with a small step size, 

followed by a projective step with a large step 

size using an implicit prediction-correction 

approach. We call the small step integration the 

inner integrator, whereas the large projective 

step is referred to as the outer integrator. To 

fairly compare the computational efficiency of 

the PIM with the commercial simulator 

DIgSILENT Power Factory, the current-

injection form of the algebraic equations is 

adopted during the inner and outer integration 

for the consistency of models. The algebraic 

equations are nonlinear since distribution 

generation is considered during the simulation. 

Accordingly, we use the Newton Raphson (NR) 

method  to solve the nonlinear algebraic 

equations, which is the same as that of Power 

Factory.  

Specifically, one procedure of the PIM 

integrates from time 𝑡𝑛 to 𝑡𝑛+𝑘+𝑀 as follows:  

Stage I: A suitable explicit integration method is 

used for 𝑘 steps with a small step size Δ𝑡 
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corresponding to the fast time constants of the 

simulated system. Thus, the state variables 𝒙𝑛+𝑘 

at 𝑡𝑛+𝑘 can be computed. The explicit integration 

method must have at least second-order 

accuracy (the reason will be given later).  

Stage II: Firstly in this stage, needs to be 

implicitly differenced at 𝑡𝑛+𝑘+𝑀 as 

 

where 𝒙𝑛+𝑘+𝑀 denotes the system state variables 

at 𝑡𝑛+𝑘+𝑀 , 𝒚𝑛+𝑘 and 𝒚𝑛+𝑘+𝑀 refer to the algebraic 

variables at 𝑡𝑛+𝑘 and 𝑡𝑛+𝑘+𝑀, respectively. Then, 

𝒙𝑛+𝑘+𝑀 and 𝒚𝑛+𝑘+𝑀 are computed with a large step 

size of Δ𝑇 = 𝑀Δ𝑡 (𝑀 is a positive integer) in the 

following manner:  

a) The differential equations of (3) are integrated 

from 𝑡𝑛+𝑘 to 𝑡𝑛+𝑘+𝑀 by the explicit Euler method 

to predict the initial estimates of 𝒙𝑛+𝑘+𝑀 as  

 

and compute the algebraic function 𝒈(𝒙∗𝑛+𝑘+𝑀  , 

𝒚∗𝑛+𝑘+𝑀  ) = 0 to predict the initial estimates of 

𝒚𝑛+𝑘+𝑀.  

b) Correct 𝒙∗𝑛+𝑘+  and compute the initial 

estimates of 𝒙𝑛+𝑘+𝑀 through  

 
and then the initial estimates of 𝒚𝑛+𝑘+𝑀 can be 

computed by solving 𝒈(𝒙(0)
 𝑛+𝑘+𝑀 , 𝒚(0)

 𝑛+𝑘+𝑀  ) = 

0.  

c) Further correct 
(0)

 𝑛+𝑘+𝑀 based on  

 

 

and then compute 𝒈(𝒙(1)
𝑛+𝑘+𝑀  , 𝒚(1)

𝑛+𝑘+𝑀 (1) ) = 0 

to correct 𝒚(0)
 𝑛+𝑘+𝑀 .  

d) Terminate the iterations when the 

convergence condition is satisfied. If not, one 

can substitute 𝒙(1)
𝑛+𝑘+𝑀  and 𝒚(1)

𝑛+𝑘+𝑀  for 𝒙(0)
 

𝑛+𝑘+𝑀  and 𝒚(0)
 𝑛+𝑘+𝑀  in (respectively, and then 

repeat c) and d) until the iterations converge.  

 

In (8), 𝜉 denotes the error threshold.  

In the procedure above, the parameters 𝑘 and 𝑀 

represent the number of inner integration steps 

and the multiple of the step size Δ𝑡 during the 

outer integration, respectively. Assum-ing that 𝑘 

= 3 and 𝑀 = 5, the schematic diagram of one 

pro-cedure of the PIM is shown in Fig. 3. 

 

Fig. 3. Schematic diagram of one procedure of 

the PIM. 

IV. ADAPTIVE PARAMETER CONTROL 

FOR THE PIM 

Stability domains of the conventional integration 

algorithms with A-stability, such as the 

trapezoidal method, are not affected by their step 

sizes. Thus, some variable step size meth-ods 

can be adopted for these algorithms to accelerate 

the calculation speed regardless of stability. 

Similarly, the stability domain of the PIM is 

irrelevant to its parameter 𝑀, and accordingly, 

we propose an error estimation method and an 

adaptive parameter control scheme for the PIM 

in this section 

A. Error Estimation for the PIM  
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The error estimation for the PIM needs to be 

discussed sep-arately for different orders of its 

inner integration method:  

1) Second-Order Integration Method:  

We assume that the modified Euler (ME) 

method is selected as the inner integrator of the 

PIM. The third-order term in the Taylor 

expansion of the ME method from time 𝑛Δ𝑡 to 

(𝑛 + 𝑎)Δ𝑡 can be described as  

 

Then, given parameter 𝑘, the third-order term in 

the Taylor expansion of the PIM proceeding one 

overall integration step with parameter 𝑀 is 

obtained as 

 

and thus the LTE of the PIM can be 

approximated by neglecting the high-order 

residuals as 

 

 

2) Integration Method of Order 𝑝 (𝑝 > 2): In 

this case 

 

and further, the LTE can be estimated as  in a 

similar way. 

 

The differential term can be estimated by the 

Lagrange interpolation formula as 

 

It is worth noting that the parameter 𝑘 of the 

PIM should be no less than 3 to ensure the 

solvability 

B. Adaptive Parameter Control Strategy  

The main concept of the PIM with adaptive 

parameter control (PIM-AP) is as follows. First, 

after the inner integration of the 𝑙th step, the 

parameter 𝑀𝑙 of the upcoming outer integrator is 

obtained by a priori error estimation based on 

𝑀𝑙−1, namely, the parameter of the last step of 

the PIM-AP. Then, we proceed with the first 

three stages of the outer integrator using 𝑀𝑙 and 

estimate the local error of the 𝑙th step through a 

posteriori error estimation. If the local error 

satisfies the error condition, 𝑀𝑙 is accepted and 

the rest of the stages will be performed. 

Otherwise, 𝑀𝑙 is rejected and the outer 

integrator will be recalculated with an updated 

parameter. The pseudo code for the adaptive 

parameter control of the PIM is provided in 

Algorithm 1. In Line 7 of Algorithm 1, ⌊𝑥⌋ 

represents the “floor” function, taking the 

integer part of 𝑥 and ignoring the decimal part, 

and 𝜏 in Line 10 denotes the estimated error 

tolerance. 

 

V. SIMULATION RESULTS 

The simulation time is set to 5 seconds, and the 

active power reference P* of the VSG unit is 

changed from 0 to 0.1, in per unit, at 1.0 s under 

the condition that the reactive power is 0. In this 

scenario, the active power step response of the 

VSG is featured, and the PIM-AP is verified by 

the electromagnetic simulator 

MATLAB/Simulink with the ode23 solver. The 

maximum value of the parameter 𝑀 of the PIM-

AP is set to 40, and the simulation results are 

shown in Fig. 4. The results of the PIM-AP are 

highly similar to those of Simulink. 
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Fig 4.(a)Simulation results when P* of 

the VSG unit changes 

 

 

Fig 4.(b) Simulation results during the 

mode transition 

 

Fig 4.(c) Parameter adaption of the PIM-AP 

 

Fig 4.(d) Absolute errors of the PIM-AP and the 

PIM-FP with 𝑘 = 3 and 𝑀 = 8 

The PIM-AP is verified by the commercial 

transient stability simulator DIgSILENT Power 

Factory in this case. The simulation results are 

shown in Fig. 5, which indicates that the results 

of the PIM-AP and Power Factory are 

indistinguishable. The VSG units respond 

rapidly and reduce the impact of large 

disturbances on the integrated system. 

 

Fig 5.(a) Simulation results of the PIM-AP and 

DIgSILENT Power Factory RMS values of the 

voltage of node 60 

 

Fig 5.(b) Simulation results of the PIM-AP and 

DIgSILENT Power Factory Active power 

outputs of the VSG units 

VI. CONCLUSION 

The proposed PIM decomposes one procedure 

into several small steps corresponding to the 

time constants of the fast dynamics and one 

projective step for accelerating the simulation 

speed, which are treated separately with 

different methods. The PIM is a second-order 

method, and its numerical stability is not 
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affected by the selection of the step size. Based 

on this property, we have also presented an 

adaptive parameter control strategy for the PIM 

to further improve its computational 

performance. Various simulation experiments 

were performed on test systems with DGs and 

VSGs, and the accuracy of the PIM was verified 

against that of electromagnetic simulation using 

the MATLAB/Simulink tool.  
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