SRAM Architecture with A Full-Swing Local Bitline Based on the 22-nm Fin FET Technology

Shaik Rubia, P.Annapurna Bai

Abstract


In this paper, the drawback of the average-8T SRAM architecture based on an advanced technology is analyzed, and a suitable SRAM architecture that overcomes this drawback is proposed. However, in the case of anaverage-8T SRAM based on an advanced technology, such as a 22-nm FinFET technology, where the variation in threshold voltage is large, the boosted WL voltage cannot be used, because it degrades the read stability of the SRAM. Thus, a full-swing local BL cannot be achieved, and the gate of the read buffer cannot be driven by the full supply voltage (VDD), resulting in a considerably large read delay. To overcome the above disadvantage, in this paper, a differential SRAM architecture with a full-swing local BL is proposed. In the proposed SRAM architecture, full swing of the local BL is ensured by the use of cross-coupled pMOSs, and the gate of the read buffer is driven by a fullVDD, without the need for the boosted WL voltage. Various configurations of the proposed SRAM architecture, which stores multiple bits, are analyzed in terms of the minimum operating voltage and area per bit. It should be noted that the proposed differential SRAM architecture can resolve the half-select issue without the need for a write-back scheme, and it exhibits a competitive area; it also exhibits a full-swing local bitline (BL) that enables a considerably smaller read delay than that of average-8T SRAM architecture.


Full Text:

PDF




Copyright (c) 2017 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org