MIMO OFDM PAPR Reduction by DHT Based Residue Number System

R. Rathika, B. Sonali, R. Manasa

Abstract


The peak-to-average power (PAPR) is one of the main challenges in multicarrier transmissions. Aiming at reducing the PAPR, we propose a residue number system (RNS)-based OFDM parallel transmission scheme. The key idea of the proposed scheme is to utilize the parallel property of RNS to convert the input signals into the parallel smaller residue signals while utilizing the characteristic of RNS modular operation to effectively limit the output in each residue subchannel after inverse fast Fourier transform, which is smaller than the corresponding modulus. The main contribution of the proposed scheme is to reduce the dynamic range of the transmitted signal without nonlinear distortion so as to reduce the PAPR during the transmission. A generalized performance of the proposed scheme is analyzed in this paper, including the PAPR reduction, the complexity, the transmission bandwidth, etc. Also, an approximate formula to calculate the transmission bandwidth of the proposed scheme is derived, which simplifies design procedure in practice and implies that a minor increase of the dynamic range of RNS will bring comparative improvement of the transmission bandwidth consumption. Theoretical analysis and simulation results demonstrate that the proposed scheme has the ability to achieve desirable PAPR reduction and low computational complexity without nonlinear distortion. In the future work Discerte Hartley Transform (DHT) is one of the advanced technique which is used to improve the performance of the signal by reducing PAPR. DHT provides reduced PAPR and low complexity when compared to RNS.


Full Text:

PDF




Copyright (c) 2018 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org