Power Value Development for Smart Households with Multilevel-THSeAF and PR Controller

Akkemi Suryaprakash Reddy, Md. Faizullah

Abstract


In this paper, a transformerless hybrid series active filter using a sliding-mode control algorithm and a notch harmonic detection technique are implemented on a single-phase distribution feeder. This method provides compensation for source current harmonics coming from a voltage fed type of nonlinear load (VSC) and reactive power regulation of a residential consumer. The realized active power filter enhances the power quality while cleaning the point of common coupling (PCC) from possible voltage distortions, sags, and swells initiated through the grid. Furthermore, to overcome drawbacks of real-time control delay, a computational delay compensation method, which accurately generates reference voltages, is proposed. Based on an improved compensation strategy, while the grid current remains clean even with a small compensation gain, voltage disturbances initiated by the power system are obstructed by the compensator, and the PCC became free of voltage harmonics and protected from sag and swell. Simulation results are presented and discussed.


Full Text:

PDF




Copyright (c) 2018 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org