Energy Efficient Routing Algorithms for Wireless Sensor Networks and Performance Evaluation of Quality of Service

Rahul Jaiswal, Pavan Kumar


The popularity of Wireless Sensor Networks (WSN) have increased tremendously in recent time due to growth in Micro-Electro-Mechanical Systems (MEMS) technology. WSN has the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. Here, sensor nodes are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the network‘s lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. In this paper, clustering based routing protocols for WSNs have been discussed. In cluster-based routing, special nodes called cluster heads form a wireless backbone to the sink. Each cluster heads collects data from the sensors belonging to its cluster and forwards it to the sink. In heterogeneous networks, cluster heads have powerful energy devices in contrast to homogeneous networks where all nodes have uniform and limited resource energy. So, it is essential to avoid quick depletion of cluster heads. Hence, the cluster head role rotates, i.e., each node works as a cluster head for a limited period of time. Energy saving in these approaches can be obtained by cluster formation, cluster-head election, data aggregation at the cluster-head nodes to reduce data redundancy and thus save energy. The first part of this thesis discusses methods for clustering to improve energy efficiency of homogeneous WSN. It also proposes Bacterial Foraging Optimization (BFO) as an algorithm for cluster head selection for WSN. The simulation results show improved performance of BFO based optimization in terms of total energy dissipation and no of alive nodes of the network system over LEACH, K-Means and direct methods.

Full Text:


Copyright (c) 2019 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


All published Articles are Open Access at 

Paper submission: