Photo Voltaic cell Integrated DVR for Power Quality Improvement

G. Saritha, J. Srineswari

Abstract


Grid integration of distributed energy resources (DERs) is increasing rapidly. Integration of various types of energy storage technologies like batteries, ultra capacitors (UCAPs), superconducting magnets and flywheels to support intermittent DERs, such as solar and wind, in order to improve their reliability is becoming necessary. Of all the energy storage technologies UCAPs have low energy density, high power density and fast charge/discharge characteristics. They also have more charge/discharge cycles and higher terminal voltage per module when compared to batteries. All these characteristics make UCAPs ideal choice for providing support to events on the distribution grid which require high power for short spans of time. UCAPs have traditionally been limited to regenerative braking and wind power smoothing applications.

The major contribution of this dissertation is in integrating UCAPs for a broader range of applications like active/reactive power support, renewable intermittency smoothing, voltage sag/swell compensation and power quality conditioning to the distribution grid. Renewable intermittency smoothing is an application which requires bi-directional transfer of power from the grid to the UCAPs and vice-versa by charging and discharging the UCAPs. This application requires high active power support in the 10s-3min time scale which can be achieved by integrating UCAPs through a shunt active power filter (APF) which can also be used to provide active/reactive power support. Temporary voltage sag/swell compensation is another application which requires high active power support in the 3s-1min time scale which can be provided integrating UCAPs into the grid through series dynamic voltage restorer (DVR). All the above functionalities can also be provided by integrating the UCAPs into a power conditioner topology." The proposed concept is implemented to PV Applications by using Mat lab/simulink Software.


Full Text:

PDF




Copyright (c) 2016 G. Saritha, J. Srineswari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org