High Accuracy Fixed Width Booth Multiplier Base on Multi Level Conditional Probability

K. Rajashekar, G. Santhosha

Abstract


This brief proposes an accuracy-adjustment fixed-width Booth multiplier that compensates the truncation error using a multilevel conditional probability (MLCP) estimator and derives a closed form for various bit widths L and column information w. Compared with the exhaustive simulations strategy, the proposed MLCP estimator substantially reduces simulation time and easily adjusts accuracy based on mathematical derivations. Unlike previous conditional-probability methods, the proposed MLCP uses entire nonzero code, namely MLCP, to estimate the truncation error and achieve higher accuracy levels. Furthermore, the simple and small MLCP compensated circuit is proposed in this brief. The results of this brief show that the proposed MLCP Booth multipliers achieve low-cost high-accuracy performance. Hough transform is widely used for detecting straight lines in an image, but it involves huge computations. For embedded application, field-programmable gate arrays are one of the most used hardware accelerators to achieve real-time implementation of Hough transform. In this paper, we present a resource-efficient architecture and implementation of Hough transform on an FPGA. The incrementing property of Hough transform is described and used to reduce the resource requirement. In order to facilitate parallelism, we divide the image into blocks and apply the incrementing property to pixels within a block and between blocks. Moreover, the locality of Hough transform is analyzed to reduce the memory access. 


Full Text:

PDF




Copyright (c) 2016 K. Rajashekar, G. Santhosha

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org