Hybrid Memory Systems to Improve the Performance of PCM

C Mariveedu Suresh, K Madanna

Abstract


Modern servers require large main memories, which so far have been enabled by improvements in DRAM density. However, the scalability of DRAM is approaching its limit, so Phase-Change Memory (PCM) is being considered as an alternative technology. PCM is denser, more scalable, and consumes lower idle power than DRAM, while exhibiting byte-addressability and access times in the nanosecond range. Unfortunately, PCM is also slower than DRAM and has limited endurance. These characteristics prompted the study of hybrid memory systems, combining a small amount of DRAM and a large amount of PCM. In this paper, we leverage hybrid memories to improve the performance of cooperative memory caches in server clusters. Our approach entails a novel policy that exploits popularity information in placing objects across servers and memory technologies. Our results show that (1) DRAM-only and PCM-only memory systems do not perform well in all cases; and (2) when managed properly, hybrid memories always exhibit the best or close-to-best performance, with significant gains in many cases, without increasing energy consumption

Keywords


Cooperative memory caches, persistent memory, Phase-Change Memory (PCM).

Full Text:

PDF




Copyright (c) 2016 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org