Routing Path Inference in Dynamic and Large scale Networks

M Sindhu, N Dharani, R Dhanalakshmi

Abstract


Recent wireless sensor networks (WSNs) are becoming increasingly complex with the growing network scale and the dynamic nature of wireless communications. Many measurement and diagnostic approaches depend on per-packet routing paths for accurate and fine-grained analysis of the complex network behaviors. In this paper, we propose iPath, a novel path inference approach to reconstructing the per-packet routing paths in dynamic and large-scale networks. The basic idea of iPath is to exploit high path similarity to iteratively infer long paths from short ones. iPath starts with an initial known set of paths and performs path inference iteratively. iPath includes a novel design of a lightweight hash function for verification of the inferred paths. In order to further improve the inference capability as well as the execution efficiency, iPath includes a fast bootstrapping algorithm to reconstruct the initial set of paths. We also implement iPath and evaluate its performance using traces from large-scale WSN deployments as well as extensive simulations. Results show that iPath achieves much higher reconstruction ratios under different network settings compared to other state-of-the-art approaches

Full Text:

PDF




Copyright (c) 2017 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org