A Novel Repeated Disintegrated Algorithm for RB Multiplication to Obtain Max Output

Bukya Balaji

Abstract


Within this paper, we've suggested a manuscript recursive decomposition formula for RB multiplication to acquire high-throughput digit-serial implementation. Through efficient projection of signal-flow graph (SFG) from the suggested formula, a very regular processor-space flow-graph (PSFG) comes. Redundant basis (RB) multipliers over Galois Field( ) have acquired huge recognition in elliptic curve cryptography (ECC) mainly due to their minimal hardware cost for squaring and modular reduction. It's proven the suggested high-throughput structures are the most useful one of the corresponding designs, for FPGA and ASIC implementation. By determining appropriate cut-sets, we've modified the PSFG superbly and carried out efficient feed-forward cut-set retiming to derive three novel multipliers which not just involve considerably a shorter period-complexity compared to existing ones but additionally require less area and fewer power consumption in comparison using the others.

Full Text:

PDF




Copyright (c) 2017 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

All published Articles are Open Access at  https://journals.pen2print.org/index.php/ijr/ 


Paper submission: ijr@pen2print.org